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Consider the function:

f) = —

Tr—1

Suppose an initial value © = xg where g # 1 has been given. Now form the
iterates:

z1 = f(20)
x2 = f(z1)
w3 = f(z2)
rq = f(z3)

Or:
zn = f(FFFLSSSSCSF(0)))))-)

Come on, let’s just do it:
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See the pattern?

Theorem. The k’th iterand (k € Z, k > 0) is given by the fraction:

Fy_1x9 — Fy,

T = —
Frxo — Fiy1

Where F}, are terms of the Fibonacci Sequence 1,1, 2,3,5,8,13,21, ..., which is
defined (recursively) by:

Fr, =0 for ke Z k<0
Fo=1
Fyip1=F,+ Frpa for ke Z k>0



Proof. By induction to k. The theorem is true for £k = 1. Assume that it is
true for a certain £k = m. Then calculate for k = m + 1:
1 Frzg — Frga

FPoorwo—Fo | = (Fp_120 — Frn) + (Fn2o — Fpnp1)

" Fmzo—Fmt1

Tm+1 =

B Frzo — Frnt _ _F(m+1)—1‘T0 — Fung)
(Fm—l + Fm)xO - (Fm + Fm+1) F(m+1)w0 - F(m+1)+1

Corollary. The iterations end up in undefined for all initial values (with & > 0):
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Because one of the denominators in the iterates becomes zero then. But if such

is the case for xy, then it’s sensible to nevertheless continue the iterations with
Tp+1 = 0, because: limy, 400 1/(xp—1)=0.

Theorem. If an iterand is given by a; = Fj11/F); then the next one is:
xi41 = Fy/Fgx_1 , provided that (k € Z,k > 1).

Proof.
1 R F
Fe1/Fe =1 Frpp —F,  Frpa

Corrolary. Thus the successive iterands are given by the sequence of so-called
Fibonacci Fractions, in reverse order, i.e : 13/8,8/5,5/3,3/2,2/1,1/1.

Tiy1 =

Lemma.
F 1 5
lim —tL = ¢ where ¢ = +V5 is known as the golden ratio
Proof.
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If a limit exists, then  limg—oo Fr41/Fr and  limgoo Fi/Fr—1 must be
the same. Name it ¢, then:

1+45
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¢=1+% = P-0-1=0 = ¢

Since it is clear that ¢ > 0, only the solution ¢ = (1 + 1/5)/2 is valid.
Further details are omitted, for the reason that this is quite a well known result.
The Scottish mathematician Robert Simson proved it in 1753:

http://mathworld.wolfram.com/FibonacciNumber.html



Theorem. There are two invariant points within the iterands, namely:

Y= 1_2\/5 and ¢ := 1+2\/5

Proof. Solve the equation:

1 5 1+5
T = = r—rz—-1=0 =— zx=
z—1 2
Corrolary. Because they are roots of the same quadratic equation: ¢.¢0 = —1
and o+ =1.

Theorem. The sequence of iterands zj always converges to ¢ = (1 — v/5)/2,
which is irrespective of the initial value z¢. With one single exception, namely:

zo=(1+V5)/2=¢.

Proof. Use the lemma in:

Frooawg —F _ lmpooo(Fe—1/Fi)zo =1 wo/¢p—1 -1 29—¢
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Here —1/¢ = and (zg — ¢)/(z0 — ¢) = 1 except when zo = ¢ .
Theorem. If the iterand xj is negative, then ;1 will be negative as well.

Proof.
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=— <
xE — 1 |zg| + 1

<0 = 0

Corrolary. Once an iterand has become negative, all iterands that follow will
remain negative.

Theorem. Only iterands zj in the interval 1 < x < 2 can result in xpq1
and xy42 which are still positive.

Proof. An interand x;, = 1 results in undefined. If an iterand becomes x; < 1
then the next xy,1 will be negative:

1
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An interand xj = 2 results in undefined. If an iterand becomes xj > 2 then the
next xp41 will be less than one (and thus 1o will be negative):
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Corrolary. Thus our iterands can only remain positive in a rather dangerous
interval, by which I mean that it is full of pitfalls like { 1/1, 2/1, 3/2, 5/3 }
eventually resulting in a division by zero. The behaviour of iterands outside the
dangerous interval can be summarized as follows. You can jump in anywhere.
2<z<0) = (0<z<]l) - (—o<z<-1) = (-l<z<0).

There is no escape from the latter interval, though:

Theorem. The abovementioned invariant points serve as a watershed:

Il<ap <o = ¢ < xp41 < 00

o< xR <2 — 1<zpy1 <o
—oco < xp <Y e P < Tpe1 <0

P <xp <0 == —1 < zpp1 <Y

Proof. Only the part with the square roots in it:
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Corrolary. This means that successive iterands x show oscillatory behaviour.

Especially in the neighbourhood of v, the point of convergence, they become,
for example: x19 < ¥, 11 >V, 12 <Y, T13 > P ... .
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Theorem. The invariant point ¢ = (1 — /5)/2 is stable; the invariant point
¢ = (1++/5)/2 is unstable.

Proof. By stable we mean that small deviations become smaller and by unstable
we mean that they become greater. Let’s take a 6 > 0 and see what happens:
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Abbreviate: 1) = (1 —/5)/2 a~ —0.618 . Then (1 — 6.¢)) > 1 and therefore:

=1 =by)  by?
T T 50 _1f&w<§

ka(l—\/g)/2—5 =  Tg+1 =

=Y+e —

Tl = 150



Abbreviate: ¢ = (14 +/5)/2 ~ 4+1.618 . Then (1 — 6.¢) < 1 and therefore:
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Thus if |z — ¢| = ¢ then it follows that |xg+1 — | >> . QED .

Corrolary. The fact that ¢ is unstable explains its status as an exception. For
it means that any disturbance in that value will explode as iterations proceed,
thus finally resulting, nevertheless, in the proper limit, which is ¢ = (1 —+/5)/2.
It is noticed, moreover, that ¢ is in that dangerous interval 1 < zj < 2 and that
the pitfall values of Fj1/Fy become very dense in the neighbourhood of ¢ .

Definition. The Fibonacci Fractions fi for k € N,k > 0 are: fr = Fy11/F .
Some values are: fo=1/1, f1i =2/1, f3=3/2, fa=5/3, fs=8/5.

From previous theorems, it is clear that:

Ti = fry1 = Tig1 = fr

T <¢p = Tip1> 0 and x> ¢ = Tiqy1<9o

Herewith we find: fO<¢7f1>¢af2<¢af3>¢af4<¢af5>¢a
etcetera. Thus all even Fibonacci Fractions are smaller than the golden ratio

while all odd Fibonacci Fractions are greater than the golden ratio. Meaning
that every Fibonacci Fraction in the iterations sequence is surrounded either by
two greater values either by two smaller values. With other words: the fractions
fx show oscillatory behaviour around the value of the golden ratio ¢.

Lemma. A well known result is: " = F, — F,_1¢ (n € N).

The lemma, but not the proof, is in the following nice reference on the web:
http://wuw.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/props0fPhi.html

Proof. The lemma is true for n = 1, because: 1/2—+/5/2 =1—1(1/2+/5/2).
Now assume that the formula is true for n = k£ and then prove it for n = k + 1.
Herewith we use the abovementioned properties ¢ + 1 = 1 and ¢.¢p = —1.

Vip = (Fy — Fr1 ¢)Y = Fp(1— ¢) — Fr1(—1) = (Fp + Fr-1) — Fr ¢
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Corrolary. This can be written as: fy = Fjy1/Fp = ¢+ ¢t/ F), . Here ¢k *!
is negative for even (k) and positive for odd (k) , which is entirely in concordance
with the above result: the oscillatory behaviour of the Fibonacci Fractions. But
it can be seen now, in addition, that the absolute values |fi — ¢| are strongly
decreasing with increasing values of (k) . Convergence is extremely fast.



Theorem. If an iterand is given by z; < f then the next one is: x;11 > fr—1
and if an iterand is given by x; > fj; then the next one is: z;11 < fr—1 .

Proof.
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xr; > Fk+1/Fk = Tip1 < Fk+1/Fk 1 Frs

Corrolary. This gives us some idea how iterations proceed in the dangerous
interval 1 < z < 2. If an iterand z; is somehow in between fi1 and fi (but
not in between fiys and fii1), then the next iterand x;,;1 will be somehow in
between fi, and fi_1 (but not in between the previous fi1 and fi). And so on
and so forth. The last possible iteration gives 1/1 < & < 3/2. Then the iterands
are ”thrown out” of the dangerous interval: 1/(3/2—1)=2and 1/(1—1) = oo,
hence 2 < x < oo. The rest of the story is well known, as it has been outlined
above: (2<z<o0) - (0<z<1l) - (—ro<z<-1) - (-1<2<0).

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.



