Quadrilateral Algebra

Let’s consider the simplest finite element shape in two dimensions except one:
the quadrilateral. Function behaviour is approximated inside a quadrilateral
by a bilinear interpolation between the function values at the vertices or nodal
points. Let T be such a function, and z,y coordinates. Then try:

T=Ar+ Br.x + CT.y + Dr.z.y

Consider the quadrilateral as depicted in the picture below on the left. The
vertex-coordinates of this quadrilateral are defined by the second and the third
column of the matrix below. This matrix is formed by specifying T vertically
for the nodal points and horizontally for the basic functions 1, z,y, z.y:

T 1 —3 0 0 Ar
T, | |1 +5 0 0 Br
s | |1 0 -3 0 Cr
Ty 1 0 45 0 Dr

The last column of the matrix is zero. Hence it is singular, meaning that A, B, C
and D cannot be found in this manner. It turns out that such a method, though
it has been employed successfully for a triangle, cannot be used for an element
which is interpolated by a function other than a linear one.
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A solution can be found, however. Assume that the same expression is valid
for the function T as well as for the coordinates x and y. Herewith it is ex-
pressed that we have, again, an isoparametric transformation. The next step
is then to find a suitable parent-element. Our first attempt didn’t’t work out,
but maybe we are more lucky with the element depicted on the right in the
same figure. The interpolation function looks alike, though it is expressed now
in local coordinates & and 7 :

T=Ar+ Br.{+Cr.n+ Dr.&n

It is assumed that the local coordinates inside a parent quadrilateral are between
—% <¢L —I—% and —% <n< —I—%, meaning that the parent quad is actually a



square. Now specify again for the vertices and the basic functions:

o I e i e A
| |1+ -1 -1 Br
| = |1 __% +§ _% Cr F.E «— F.D.
Ty 1 +§ +§ +Z Dr

It is remarked that the above matrix is orthogonal, i.e. its columns are mutually
perpendicular. This also means that the ”condition” of the matrix is optimal.
In fact it’s even better. Apart from scaling factors, the inverse matrix is equal

to the transposed, which can be determined easily:
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cr |~ 1
Dy +1 -1
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Writing out the matrix notation:

BN
N
[

= D[RO s | =

Br
Cr
Dt

+1 + 1o+ 15+ Ty)
Ty 4+ T — T3+ 14)
—Th =T+ T5+Ty)
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(+Th —To — T3+ Ty

Hence A7, B, Cr, Dt are equal to local partial derivatives:

oT oT 0*T
T(O):AT 5 a_g(O)ZBT ; a_n(O):CT ; ﬁgan:DT
These coefficients form a Finite Difference formulation:
orT orT 92T
T_YﬂD+52®)5+55®)n+8&M§n
Shape functions may be constructed as follows:
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When written out as:
Niz%—%é—%n+6n=(§—®(§—m
Ny = 1 +?§— %77—5-77: (?‘f‘g)(? —-n)
N3 = i ?54‘?77—5-77: (? —5)-(¥ +1)
Ny=3+358+5n+&n=(G+8-(3+n)



these coefficients form a Finite Element formulation:
T = Nl.Tl + N2.T2 + Ng.T3 + N4.T4

Any shape function Nj has a value 1 at vertex (k) and it is zero at all other
vertices. Global and local coordinates of an arbitrary quadrilateral are related
to each other via the isoparametric transformation:

Tr = N]_.l'l + N2.$2 + Ng..ﬁl‘g + N4.I4
Yy = Niy1 + Naya + N3.yz + Nyys

The equivalent Finite Difference representation is:

m(ﬁ, 77) =A; + B;.§ + C:c-n + D;.&n where:
y(&,n) =A,+ By, +Cyn+ Dyl :

(y1 +y2 +ys +ya)
(y2+ya) — 5(v1 +ys)
(ys +ya) — §(y1 +2)
+y1 — Y2 — Y3 + Ya)

Ay = Hay + 20 4+ 23 + 24) : Ay:%
By = (w9 + 14) — L(x1 +23) B, = 2
Cr = 5(x3 +24) — 5(21 + 22) Cy =3
D, = (+$1 — o — T3+ T4) ; =(

The origin of the local (£,n) coordinate system is determined by £ = 0 and
n = 0. Hence by (z,y)(0) = (A4, Ay) = (Z,7) = midpoint = centre of gravity.

The ¢-axis is defined by —3 < ¢ < +3 and 5 = 0. Hence by the (dashed) line
(z,y) = (Az, Ay) +&.(Ba By).
The n-axis is defined by <n< —i—% and £ = 0. Hence by the (dashed) line

(2.9) = (As. Ay) +1.(Ch, 5)
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Function behaviour at the sides of a bi-linear quadrilateral is linear:
T(—gm) = (3 —m.Tu+ (3 +n).Ts
Tltz.m) =G —n).To+ (5 +0).1h
T, *%) = (¥ —&).Th + (? +&). T,
T +3) = (3-8 Ts+ (3 + &1y



Meaning that the function values at the midpoints of the sides are the average
of function values at the vertices. Anyway, it is trivial that:
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SN+ Te) + 5(Ts+T) = S(Ta + T3) + 5(Ta + Ty

Now suppose that inside the existing quad a new quadrilateral is constructed,
also with vertices which are numbered according to (1,2, 3,4). A transition from
the old to the new vertices may be defined as follows (see figure):

(Tl =+ T3) = T1
(Tl =+ Tg) = T3

(TQ + T4) = T2
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For the values of the function 7" at the vertices of the internal quad we find the
following, according to the above triviality for average values:

T+ Ty=T5+Ty

This is valid also for the global coordinates x and y, due to isoparametrics,
though it can also be derived directly with some knowledge of planar geometry:

T1 4 Ta = x3 + T4 Y1 +Y2 =ys+ s

The geometrical meaning of this being that the internal quadrilateral is always
a parallelogram.

The Finite Difference representation of the original quadrilateral may be used
for deriving an F.D. representation for the internal quad:

T =Ar+ Br.{+Cr.n+ Dr.&n

Rewritten to the new vertices:

Ar =1+ T+ T3+ Ty) = 3(T1+T2) = 3(Ts + Ty) =Ty
Br =Ty — T\ = 0T )¢

CT = T4 —T3 :8T/877

Dr=0

The term Ar is just the average value which is localised at the midpoint of the
original quad, or the local origin, as T(0); we write Tp.
From the fact that the term with Dy is zero, the following may be concluded:

By joining the midpoints of the sides of an arbitrary quadrilateral, the so-called
internal quadrilateral of the original quad may be constructed. No restriction of
generality is the following equation, which imposes an extra relationship upon
the nodal values of an arbitrary function 7" at the internal quadrilateral element:

Ty +To =13+ 1Ty



Not only at triangles, but also at the internal element of an arbitrary quadri-
lateral, function behaviour appears to be linear:

T=Ty+ Ty —Th).,+ (Ty — T3).n
For the global coordinates we can write, in the same way:

T =1z9+ (2 — x1).£ + (x4 — x3).7

Y=o+ (Y2 —y1)-£+ (Y1 — ya)n

Due to these linear relationships, it is possible to express ¢ and 7 vice versa in
z and y:

§=[+(ys —y3)(x — x0) — (x4 — 23)(y — W0)]/A
n=[~(y2 —y1)(® — x0) + (22 — 1) (¥ — v0)]/A
With:

A= (22 —21).(ys — y3) — (x4 — 23)-(y2 — 1)
An interpretation of (£,n) as area-coordinates, like with the linear triangle,
appears to be feasible. Because any functional relationship is in fact linear, we
can also write:

Ty -1 = aT/a.’IJ(ZL‘z — 111'1) + BT/ay(yg — yl)
Ty —Ts = aT/a.’IJ(ZL‘4 — 111'3) + BT/ay(y4 — yg)

The inverse of this problem reads:

OT/0x = [(Ty — T1).(ys — y3) — (T4 — T3).(y2 — y1)]/A
8T/8y = [(.’L‘Q — 1‘1).(T4 — Tg) — (11’:4 — 133).(T2 — Tl)}/A

Giving for the internal element of a quadrilateral:

9/0x | _ | —(a—wy3) +wa—wys3) +@w2—w) —(y2—u1)
{8/334}_{—1—(:54—:53) —(ra—15) —(ms—71) +(as—m1) | /2

Herewith it is said that the gradient-operator, at an internal quadrilateral, is
represented by a 2 x 4 Differentiation Matriz. Let us repeat, at last:

Ar = %(Tl + 1) = %(Ta +T1y)

Br=T,—1T
CT = T4 - T3
Four equations with four unknowns, which can hence be solved:
Ty, = Ap — 3Br
T = Ar + =Br
T3 =Ar — 5Cr

Ty=Ar +5Cr

This is recognized as the irreversible matrix that we found at the beginning
of this chapter. The circle is closed by noting that the parent-element of the
internal quadrilateral has been depicted already in the first figure on the left.



