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Triangle Algebra

Let’s consider the simplest non-trivial finite element shape in two dimensions:
the linear triangle. Function behaviour is approximated inside such a triangle
by a linear interpolation between the function values at the vertices, also called:
nodal points. Let T" be such a function, and x, y coordinates, then:

T'=Ax+By+C

Where the constants A, B, C are yet to be determined.
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Substitute » = 2, and y = yi with k = 1,2, 3:

Ty 1 21 wn c

T, | =] 1 z2 ¥ A

T3 1 r3 Y3 B

The first of these equations can already be used to eliminate the constant C,

once and forever:
T1 = A.l‘l —|— Byl + C

Resulting in:
T-Th=A(x—x1)+ B.(y— 1)

Hence the constants A and B are determined by:

Tp —T1 = Az — x1) + B.(y2 — v1)
T3 —T1 = A(zs — x1) + B.(y3 — y1)

Two equations with two unknowns. The solution is found by straightforward
elimination, or by applying Cramer’s rule:

= [(yz —y1).(T2 — T1) — (y2 — y1).(T3 — T1)]/A
= [(1’2 — :L'l).(T3 — Tl) — (Ig — .’I}]).(TQ — Tl)]/A



There are several forms of the determinant A, which should be memorized when
it is appropriate:

A= (2 —21).(y3 — y1) — (23 — 21).(y2 — ¥1)

A =2 x area of triangle

A =11.y2 + 22.Y3 + T3.91 — Y1-T2 — Y2.T3 — Y3.T1
A =w1.(y2 —y3) + v2.(y3 — 1) + 23.(31 — ¥2)

A =y (73 — 22) + y2.(z1 — 23) + y3.(v2 — 1)

1 1 Y
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Anyway, it is concluded that:
T— T1 = f(TQ — Tl) + 7](T3 — Tl)

Where:
§=[(ys—v1).(x — 1) — (z3 — 21).(y —1)]/A
n=1[x2—21).(y —y1) = (g2 —1)-(z — 71)]/A

o €1 [ +ws-m) —(ws—m) -
I e s 2N il

n —(y2—y1) +(r2—21) y—1

The inverse of the following problem is recognized herein:
|:I‘I1:|_|:(Z‘2I1) (1311)][5}
y—un (2—w1) (Ws—wm) || m

x—x1 =& (22 — 1) +1n.(x3 — 1)
y—vy1=&y2—vy1) +1-(ys — 1)

Or:

But also:
T — T1 = g(TQ - Tl) -+ U(Tg — Tl)

Therefore the same expression holds for the function T as well as for the coordi-
nates « and y . This is precisely what people mean by an isoparametric (”same
parameters”) transformation, a terminology which is quite common in Finite
Element contexts. Now recall the formulas which express £ and n into z and y :

§=1(ys —v1).(x — 1) — (z3 — 71).(y — 11)]/A
n=[(z2—z1).(y —y1) — (y2 — y1)-(z — 21)]/A

Thus £ can be interpreted as: area of the sub-triangle spanned by the vectors
(z—z1,y—y1) and (z3—x1,y3—y1) divided by the whole triangle area. And 7 can
be interpreted as: area of the sub-triangle spanned by the vectors (z—x1,y—y1)



and (x2 — 21,y2 — y1) divided by the whole triangle area. This is the reason
why & and 7 are sometimes called area-coordinates; see the above figure, where
(two times) the area of the triangle as a whole is denoted as A. There exist
even three of these coordinates in literature. But the third area-coordinate is,
of course, dependent on the other two, being equal to (1 — & —n). Instead of
area-coordinates, we prefer to talk about local coordinates € and 7 of an element,
in contrast to the global coordinates x and y. It is possible that local coordinates
coincide with the global coordinates. A triangle for which such is the case is
called a parent element. The portrait of the parent triangle is also depicted in
the above figure: it is rectangular, and two sides of it are equal.

Let’s reconsider the expression:

T-Ty=¢(Ty—T1) +n.(T5 = T1)
Partial differentiation to & and 7 gives:
OTjo¢=Te — Ty ; OT/On=T3—Ty
Therefore, with node (1) as the origin, hence T(0) = Ty:

oT oT
T=T0)+&= +n—
0)+¢ o o
This is part of a Taylor series expansion around node (1). Such Taylor series
expansions are quite common in Finite Difference analysis. Now rewrite as
follows:

T = (1 — f — T}).Tl +§.T2 + 77.T3

Here the functions (1 — & — 1), &, n are called the shape functions of the Finite
Element. Shape functions N have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

Ni=1-¢—n ; Na=& ; Nz=n
So we have two representations, which are almost trivially equivalent:

T=T1+¢&(Ty—T1)+n.(T5 —T1) : Finite Difference like
T=>01-&—n).T1+&Ts+n.Ts : Finite Element like

What kind of terms can be discretized at the domain of a linear triangle? In
the first place, the function T'(x,y) itself, of course. But one may also try the
first order partial derivatives 9T /0x , 9T /dy. We find:

0T )0z =A=[(yz —y1).(To —T1) — (y2 — y1).(T3 — T1)]/A
8T/6y =B = [(732 - Tl)(Tg - Tl) - (.733 - Il).(TQ — Tl)]/A



By collecting terms belonging to the same T}, this can also be written as:

Ty
or/ox | _ [ +(y2—ys) +Ws—wy1) +@1—12)
A [ 0T /oy } N [ —(z2—23) —(z3 —71) —(21—122) ] %

Or, in operator form:
0/0x _ | Y2—Y Yzs—U1 Y12 /A
a/ay T3 — Ty X1 — T3 T2 —XT1

The right hand side will be called a Differentiation Matriz in subsequent work.
Thus the gradient operator at any linear triangle is represented by a 2 x 3
differentiation matrix.

Triangle Integrals

Our goal is to calculate some (first, second, third order) moments of an arbitrary
triangle. To be mathematically precise:

Lha ://mdxdy and ://ydxdy
fo ://:v2 dzdy and oy ://y2 drdy and oy ://;ry dxdy

Or even:
Moo ://x?’ drdy and Mgy ://1;2y dxdy
My, ://:L"y2 drdy and My, ://y3 dxdy

Following the theory in the previous paragraph, global coordinates (z,y) can be
expressed in their local counterparts (£, 1) :

x —x0 = §.(71 — 0) +1-(T2 — T0)

Y — Yo =& (y1— vo) +n-(y2 — Yo)
It makes no difference for the outcome of the integrals if a more handsome choice
for the coordinate system is to be preferred. Therefore, let one of the vertices

of the triangle, say (zo,¥o), be selected as the origin of our global coordinate
system. Then:

r=¢&x1+nx2 and y=E&y1 +ny2

And the Jacobian A of this transformation is involved with:

drv.dy = (1‘1?9/2 - x2y1) d&dn = A d&dn



Limited use will be made of Newton’s binomial formula:

n

n _ - kpn—k _ n! kpn—k
(a+0b) —kZ:OC(n,k)ab _kzz()(”*k)!k!ab

The formulas for any moment of a triangle take the following general form:

//wmy” dxdy =//(£-9:1 + n.22)™ (Eyr +n.y2)" Adédn =
//Z C(m, i)™ "2y Cn, §) Eyin™ Tys 7 Adédn =
i=0 =0

AN N C(m,i) wil‘%”*"c(n,j)y{ygfj//fi“nm”’i’j dédn

i=0 j=0

The above formula - being far too complicated - will not be used in the sequel.
It turns out, however, that we have to calculate integrals like:

F(m,n) = / e dédn

Herewith the integration is carried out over a rectangular equilateral triangle,
with local coordinates & and 7, where 0 < ¢ <1and 0 <7 < (1—¢) . Working
out a few steps:
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Now we can set up the following sequence of formulas:
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— n(n—1)..2.1
C (m+1)(m+2) ... (m+n— 1)(m+n)F(m+n,0)




nn—1)..2.1.m(m-1)..2.1 m!n!
= F 0)=—"
1.2....(m—1)m(m+1)...(m+n) (m +n.0) (m+n)!
So only integrals of the form F(m 4 n,0) are left to be calculated:

//fm+”d&M——1f£m+"LAL{d4t%——1j£m“%15%%

_ /1§m+nd£_/1£m+n+ld§ _ [ gmintl 71 _ [ gmtnt2 r
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F(m+n,0)

m+n+1], mo
B 1 3 1 _(m+n+2)—(m+n+1)
m+n+1 m+n+2 (m4+n+1)(m+n+2)
1
:(m+n+1)(m+n+2) Fm +n,0)
Hence:
m!n! 1 _ m!n!

F(m,n) = (m+n)!(m+n+1)(m+n+2) (m+n+2)!

This is the final result:

[ dein -
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Now let’s calculate a few of these triangle moments.

10!
Area://dxdy://dfdnA = (LA AJ2 = l(a“lyg — Z2Y1)

040+ 2)!

Since all (other) moments have to be divided by this area, the outcome of their
integrals have to be multiplied with a factor 2/A . A first order moment is:

dxd

ffor:ay —2/A // 216 + 2om) dédn A = 22, //g dédn + 22, //ndgdn
110! 5 or!

"ot 2)! TP 0Ly

In very much the same way (replace x by y) we can prove that:

[y dzdy
Area

=212/6+292/6 = (21 + 22)/3

= (y1+y2)/3

Different though it seems, this is the same as the familiar result that the coor-
dinates of the midpoint of a triangle equal one-third of the coordinates of the
vertices:

T = $0+1/3[($1—I0)+(ZE2—$0)]:(I0+$1+$2)/3
¥=y0+1/3[(y1 —vo) + (2 — o)l = (vo + y1 +y2)/3



Second order moments are:

Z/A//:L‘2 dxdy and 2/A//y2 dxdy and 2/A//xydxdy

It is sufficient to calculate only the last integral. Proper substitutions in 7y will
take care of the other two later on.

2/ [ [aydody =2 [ [tar6 + can) e + yomy

= 2z1y1//§2 d&dn + 2x1y2//§n d&dn + 2x2y1//£17 d&dn + 21:23/2//772 d&dn

200 u n 012!
21012 I T o T 02 1 2!

= 2$1y1

The result is:
Ty = (22191 + 21Yy2 + T2y1 + 222Y2)/12

Substitute z instead of y herein:

7T = (20121 + 1172 + Tax1 + 27072) /12 = 22 = (x121 + 2122 + T222) /6

Or the reverse: y instead of z. Giving:

? = (y1y1 + 12 + y2v2)/6

However, second order moments should be evaluated preferrably with respect
to the midpoint:

Ty — Ty = (2z1y1 + T1Y2 + T2y1 + 222y2)/12 — (21 + 22)/3-(y1 + y=2)/3

= (6$1y1 + 321y2 + 3x2y1 + 622y2 — 4171 — 421y — dT2Y1 — 41’2y2)/36
= (21‘1ZE1 — T1Y2 — T2Y1 + 21‘2:[/2)/36
By proper substitution:

22 — T2 = (x12) — 1120 + 2222) /18 and Y2 — T = (y1y1 — y1y2 + vaun)/18

Attention is restricted to the moment in the x-direction, because the one in the
y-direction is quite analogous.

o — 7% = (21 — 1wz +23)/18 = [2f + (af — 22122 + 23) + 23] /36



More lucid expressions are obtained by introducing a non-zero origin again:

P — TQ = [(.’L‘l — Io)Q + (1‘1 — I2)2 -+ (IQ - I0)2] /36
-7 = [ —v)+ W — 1)+ (12— v0)°] /36

The question remains to be answered why these triangle integrals are supposed
to be so important. Well, virtually every domain in the plane can be thought
as being built up from (small) triangles. This means that every integral over
such a domain can effectively be thought as a (weighted) sum of integrals over
nothing else but triangles (k):

[famy dody S, ([ drdy), S [[f2y" ddn A,
ffdacdy Dok dexdy] k >k [ffdédn A] k

, Ay,
= E zmy" dfdn} LW where wp = ———
- U/ ¢ P2 A

That is: the triangle moments are weighted with their individual areas, divided
by the total area of the domain. This is the main reason why triangle moments
are so useful: you can compose all other planar moments out of them (within
certain accuracy bounds). Provided that you are not too punctilious, nothing
else will be needed.




