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The purpose of this study is to re-establish some definite relationships between
Finite Difference and Finite Element Methods. As such, it may be considered
as a continuation of my ’Series on Unified Numerical Approzimations’ (SUNA).
A new result is the generalization of Patankar’s F.V. schemes for CONvection
and difFUSION (also called confusion), for meshes consisting of F.E. triangles.

Triangle Algebra

Let’s consider the simplest non-trivial finite element shape in two dimensions:
the linear triangle. Function behaviour is approximated inside such a triangle
by a linear interpolation between the function values at the vertices, also called:
nodal points. Let T" be such a function, and x, y coordinates, then:

T=Axz+By+C

Where the constants A, B, C are yet to be determined.
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Substitute x = xj and y = y; with k= 1,2, 3:

Ty 1 21y c

T | =1 22 y A

T3 1 T3 Y3 B

The first of these equations can already be used to eliminate the constant C,
once and forever:
T1 = A.Il + Byl + C

Resulting in:
T-Ty=A(x—x1)+ B.(y — 1)



Hence the constants A and B are determined by:

Ty —Ty = A(xa —x1) + B.(y2 — 1)
T3 —T1 = Az — x1) + B.(y3 — y1)

Two equations with two unknowns. The solution is found by straightforward
elimination, or by applying Cramer’s rule:

A=(yz —y1)-(To —T1) — (y2 —y1)-(Ts — T1)]/A
B = [(11,2 — J)l).(T3 — Tl) — (1'3 - .’L‘l).(TQ — Tl)]/A

There are several forms of the determinant A, which should be memorized when
it is appropriate:

A= (22 —x1).(ys — 1) — (23 — 21).(y2 — ¥1)

A =2 x area of triangle

A =71.y2 + T2.Y3 + T3.Y1 — Y1.T2 — Y2.T3 — Y3.71
A =w1.(y2 —y3) + 22.(y3 — 1) + 23.(31 — ¥2)

A =y1.(z3 — x2) + y2.(21 — 23) + y3.(72 — 21)

1 1 Y
A= 1 T2 Y2
1 z3 w3

Anyway, it is concluded that:
T-T=¢&(Ty—Th) +n.(Ts — T1)

Where:
§=1[(ys —y1)-(x —a1) — (23 —21).(y —1)]/A
n= [(552 - fEl)-(y - yl) - (y2 - yl)-(il7 - xl)]/A
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The inverse of the following problem is recognized herein:
|:I‘I1:|_|:(Z‘2I1) (1311)][5}
y—un (2—w1) (Ws—wm) || m

x—x1 =& (x2 —x1) +1.(x3 — 1)

y—uy1=E2—y)+n.(ys — 1)
But also:

T-T,=¢&(Ty —T1) +0.(Tz — Th)

Therefore the same expression holds for the function T as well as for the coordi-
nates x and y . This is precisely what people mean by an isoparametric (”same



parameters”) transformation, a terminology which is quite common in Finite
Element contexts. Now recall the formulas which express € and 7 into z and y :

§=1[(ys —y1).(x —a1) — (23 —21).(y —11)]/A
n=1[z2—21).(y —y1) = (g2 —1)-(z — :1)]/A

Thus £ can be interpreted as: area of the sub-triangle spanned by the vectors
(x—x1,y—y1) and (z3—x1, ys—y1) divided by the whole triangle area. And 7 can
be interpreted as: area of the sub-triangle spanned by the vectors (x —x1,y—y1)
and (x2 — 21,y2 — y1) divided by the whole triangle area. This is the reason
why & and 7 are sometimes called area-coordinates; see the above figure, where
(two times) the area of the triangle as a whole is denoted as A. There exist
even three of these coordinates in literature. But the third area-coordinate is,
of course, dependent on the other two, being equal to (1 — & — 7). Instead of
area-coordinates, we prefer to talk about local coordinates & and 7 of an element,
in contrast to the global coordinates x and y. It is possible that local coordinates
coincide with the global coordinates. A triangle for which such is the case is
called a parent element. The portrait of the parent triangle is also depicted in
the above figure: it is rectangular, and two sides of it are equal.

Let’s reconsider the expression:

T =Ty =&(Ty —Th) +n.(T5 — Th)
Partial differentiation to & and n gives:
OT)oE =Ty — Ty ; OT/On=Ts—Th
Therefore, with node (1) as the origin, hence T(0) = Ty:

oT oT
T=1T(0 - —
0)+¢ o oy
This is part of a Taylor series expansion around node (1). Such Taylor series
expansions are quite common in Finite Difference analysis. Now rewrite as
follows:
T = (1 — f — T})Tl +€T2 + ’I7T3

Here the functions (1 — & — 1), &, n are called the shape functions of the Finite
Element. Shape functions Ny have the property that they are unity in one of
the nodes (k), and zero in all other nodes. In our case:

Ni=1-¢—-n ; Na=¢ ; Ns=n
So we have two representations, which are almost trivially equivalent:

T=T1+&&(To—Th)+n.(T3 —T1) : Finite Difference like
T=01-¢(—n).T+&Ts+n.Ts : Finite Element like



What kind of terms can be discretized at the domain of a linear triangle? In
the first place, the function T'(x,y) itself, of course. But one may also try the
first order partial derivatives 91 /0x , 9T /dy. We find:

0T )0z =A=[(yz —y1).(To = T1) — (y2 —y1).(T3 — T1)]/A
8T/0y =B = [(Tg - Tl)(T3 - Tl) - (.733 - Tl)(T2 — Tl)]/A

By collecting terms belonging to the same T}, this can also be written as:

Ty
or/oz | [ +(y2—wy3) +(ys—w) +u1—y2)
A { 0T /9y } N [ —(z2 —x3) —(x3 —21) —(21 — 22) ] %

Or, in operator form:

0/0r | _ [ w2—us ys—v1 m1—1a | p
/0y T3 — Ty T1—T3 To — T

The right hand side will be called a Differentiation Matriz in subsequent work.

Thus the gradient operator at any linear triangle is represented by a 2 x 3

differentiation matrix.

Conservation of Heat

The Numerical Analysis of Diffusion starts with a well known Partial Differential
Equation (PDE). The problem will be restricted here to the simpler case of two
space dimensions:

0Qz | 0Qy

Jr Jdy

(z,y) = Planar coordinates. A possible interpretation of the vector (Qg, Q) is
the heat flux. The differential equation then follows from the law of conservation
of energy. In case of pure diffusion of heat, also known as conduction, the
components of the heat flux are related to temperature as follows:
oT oT
@ = /\8:17 @ =2 oy
Where A\ = thermal conductivity. Hence the final differential equation for the
temperature field is actually of the second degree. In order to make the PDE
amenable for numerical treatment, an integration procedure has to be resorted
to. At this point, there occurs a splitting into several distinct roads, all leading
to a numerical solution, more or less efficiently.
When using a Finite Element method, the differential equation is multiplied
at first with an arbitrary (test)function. Subsequently the PDE is integrated
over the domain of interest. Let the test function be called f, then:

[[5[22 - 222] gy o

=0







Actually, we don’t want to subdivide the Finite Element domain into triangular
elements, but rather into quadrilateral elements. However, any quad element,
in turn, can be subdivided yet into triangles, even in two different ways:
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In addition, what we want is a configuration in which all quad vertices play
an equally important role. In order to accomplish this, all of the four triangles
must be present in our formulation, simultaneously. For just one quadrilateral,
it boils down to renumbering vertices in the formulation for a single triangle,
according to the following permutations:

1 2 3 2 4 1 3 1 4 4 3 2

Also an upper label (not a power) will be attached to the values (Qu, Q).
because it must be denoted at which triangle the discretization takes place.
Any contributions are summed now over the four triangles (and the whole is
divided by a factor two again):

1 [ (ys — 42)QL — (3 — 22) 1;, i

1 [ fi o fa ]| (11 —ws)Qp — (21— 953)@11, +
L (2 —91)Qy — (22 — 21)Q,

1 _(y17y4)Q§*(T17x4) 1;,_

1 [ f2 fu f1] (y2*yl)Q§*(z2*Il)Qg +
| (Ya — 42)Q3F — (24 — 22)Q;, |

1 [ (ya —y1)Q3 — (w4 — 1) § 1

1 [ fs f1 fo]| (ys—wa)Q) — (x5 — $4)Q§ +
L (11— 3)Q5 — (11 — 23)Q;)

1 (y2 — y3)Qz — (z2 — 23)Q}

1 [ fo f3 f2 ]| (a—92)Qs— (x 4—$2)Q4

(Y3 — ya)Q2 — (z3 — $4)Q4

Another way to arrive at a formulation in which all four triangles are involved
is via Numerical Integration. The implementation of numerical integration is
done most efficiently, for quadrilaterals, by choosing four integration points



(often called Gauss points) inside the quadrilateral. According to standard
theory, these points are located at positions (¢,7) = 1/(2v/3). (Read the section
”Quadrilateral Algebra” for an explanation of £ and 7). It is possible, however,
to interpret the exact location of the ” Gauss” points with a pinch of salt. The
integration points then can be located simply at the vertices (which are only
a small distance apart from the ”true” locations anyway). Quadrilaterals then
behave as if they are composed of overlapping triangles, as depicted in the above
figure. It is also clearer now where the weighting factor 1/4 comes from: there
are 4 integration points. And quantities Q¥ are associated not only with the
four triangles, but also with the four vertices of the original quadrilateral.

In order to save unnecessary paperwork, the following shorthand notation
has been adopted. It may be interpreted as an outer product:

rij X Qr = (yi — y)) Q% — (x: — 2;)Qp = (x5 — 2:)Qy — (y; — v:) Q%

Terms belonging to fi, k = 1...4 are collected together. By doing so, the stan-
dard Finite Element assembly procedure is demonstrated at a small scale. What
else is the Finite Element matrix than just an incomplete system of equations?

T332 X Q1+ 742 X Q2+ 7134 X Q3 +0
r13 X Q1+ 714 X Q2+ 0+ 134 X Q4
To1 X Q1+ 0+ 141 X Q3+ 140 X Q4
0+721 X Q2+ 113 X Q3+ 123 X Q4

[ i fo fz fa]

] =

Subsequently use:
r32 = T34 + T42 r14 =713 + T34 41 = T42 + 721 To3 =121 + 113

To put the above in a more handsome form:

%Mz X %(Ql +Q2) + %734 X %(Ql +Q3)
5113 X 5(Q1 4+ Q2) + 5734 X 5(Q2 + Q1)
[ fo fs fu] 27"21 X ;(Ql +Q3) + ;7"42 X g(Qa +Q4)
3721 X 3(Q2 4+ Q4) + 3713 X 3(Q3 + Q4)

It’s a triviality, but nevertheless: a picture says more that a thousand words.
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It is seen that the four pieces-of-equations correspond with four pieces of line-
integrals, each of them belonging to one of the vertices. Midpoints of triangle
sides are connected by lines at which the integration takes place. The heat flux
at a midpoint is the average of values at the vertices.

Let’s adopt another point of view now and no longer concentrate on elements
but on vertices. Instead of arranging vertices around an element, elements are
arranged around a vertex. Label triangle side midpoints as a, b, c,d, e, f, g, h.
It is immediately noted that the lines connecting the midsides of the triangles
around a vertex, when tied together, neatly delineate a closed area, which can
be interpreted as a kind of 2-D Finite Volume. Expressed in the outer product
formalism, we find:

Tha X Qa +Teb X Qe+Tde X Qc+Ted XQe"‘Tfe X Qe +rgf XQg"_rhg XQg"_Tah X Qq

Which is the content of one equation in the Finite Element global matrix. All
terms together represent a discretization of the following circular integral:

ZTXQ:%deZL‘—QIdy

With help of Green’s theorem, however, such a circular integral can be converted
into a "volume” integral, over the area indicated in the above figure:

j{defc*Qxdy = +//[%me + 8{%’} dxdy

Conservation of heat is integrated over a finite volume, which is wrapped around
a vertex. So we have arrived at a Finite Difference method. To be more precise:
at a Finite Volume method. Tt is remarked that this F.V. procedure has been
applicable for curvilinear grids from the start.

Thus we derived a Theorem which Unifies a Finite Element and a Finite Volume
method, for a rather general class of 2-D diffusion problems:

Apply a Finite Element (Galerkin) method to a mesh of quadrilaterals. Subdi-
vide each of the quads into four (overlapping) triangles, in the two ways which
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2-D Resistor Model

Consider the two-dimensiona h). which describes, for example,
conduction of heat in a met
0
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Discretization of )5 and @Q,;, with help of t} atrix of a triangle,

gives, in addition:

Qo | _ _\| ¥2-¥s Ys—W
Qy T3 — T2 T]— I3

In order to save space, the following abbreviati
¥ij = Y; — yi - Then the Analytical expression:

oo, 0[]
ox ox dy

corresponds with the Numerical expression:

1 Y32 T23

2[f1 fo f3]| n




Eunw Eip Eis Ty
E31 Ez Ezs T3

N | =

=+[fi fo f3]

The finite element matriz [E;;] is thus defined, in our case, by:

1| Y23-Y23 + T23.T23  Y23.Y31 + T23.T31  Y23.Y12 T T23.T12
5 Y31-Y31 + T31-T31  Y31-Y12 + T31-T12 -)\/A
symmetrical Y12-Y12 + T12.Z12

A possible interpretation, for an arbitrary matrix coefficient, may be obtained
as follows:

1
Eyz = E3p = 5 (y31-y12 + I31-~T12) -)\/A

(22 — 21).(x1 — 23) + (y2 — y1)-(y1 — y3)] . A/A

N —

| P
= —5(’/‘12 . T13).)\/A

And for main diagonal elements:

1
B3z = 5 (Y12.Y12 + T12.212) AN/ A

[(xg = x1).(w2 — 21) + (Y2 — 91).(y2 — ¥1)] A/ A

L.
= -{—5(1"12 . Tlg))\/A

N

Since any vertex of the triangle is equally important, remaining coefficients may
be found by cyclic permutation of the vertex indices, according to (1,2,3) —
(2,3,1) — (3,1,2) :

1. .
E31 = Ei3 = —5(7“23 <791). A A

1. .

Eip = Ey = —5(7“31 “Ta2).A/A
1. .

En = +§(7“23 “Tag). A/ A
1. .

Ey = +§(7“31 731). A/ A

With other words: any matrix element is the inner product of vectors pointing
from one vertex to one (+) or two (—) other vertices.

It is remarked that, according to one of Patankar’s "Four Basic Rules” [2],
namely ”the rule of positive coefficients”, off-diagonal terms Ej;; with ¢ # j must
be less than zero. This is only the case for positive inner products (7i; - 7&;),
assuming that the determinants A are positive (: a convention that we have
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already agreed upon). This implies that any angle of a Diffusion Triangle must
be < 90°. A special case occurs when the angle between the vectors 7%; and
Tk; = 90 degrees, which means that E;; = 0. This is actually the finite difference
case, on a rectangular grid: "no” triangles, but five point stars ”instead”.
Almost any Finite Element book starts with the assembly of resistor-like
finite elements, without approximations (if one considers Ohm’s law as being
“exact”). Contained in [1] is a chapter about ”Electrical Networks”. The matrix
of an electrical resistor is derived there directly by applying the laws of Ohm

and Kirchhoff, giving:
{ +1/R —1/R }

~1/R +1/R
where R are the resistances.
Further define the connectivity (no coordinates!) of the resistor-network, and

apply two voltages. The standard FE assembly procedure can be carried out
then. Let us devise for example a triangle, built up from electrical resistors:

3

3 2

Opposite sides and vertices are numbered alike, which is nothing but a handsome
practice. The accompanying resistor matrices are subsequently added together,
to form the (finite element) resistor matrix of the triangle as a whole:

0 0 0 +1/R2 0 _1/R2 +1/R3 —1/R3 0
0 +1/Ri ~1/Ry |+| 0 0 0 |+| “1/Rs +1/Ry 0
0 71/R1 +1/R1 *1/R2 0 +1/R2 0 0 0
+1/Ra +1/R3 —1/R; —1/R,
= —1/Rs +1/Rs +1/Ry -1/
_]_/RQ —1/R1 +1/R1+1/R2

It is trivially seen that:
Ein+FEiea+FEi3=0 ; Eint+FExw+FE3=0 ; E3+FE;+E;3=0
Compare this result with our previous findings:

1| Y32:Y32 + T32.T32  Y32-Y13 + T32-T13  Y32-Y21 + T32-T21
- Y13-Y13 + T13.213  Y13.Y21 + T13.T21 | A/A
symmetrical Y21-Y21 + T21-T21

11



It is questioned if all terms in a matrix row sum up to zero here too. There are a
myriad ways to see that this is indeed the case. According to one of Patankar’s
?Basic Rules”, the coefficients sum up to zero without question. One can work
out each term algebraically and check out. A more elegant way is via geometrical
interpretation. Draw the perpendicular CH from vertex C' onto AB :

C

A
c B
Take the third matrix row as an example:

1 1
E31 = E13 = —ic.a.cos(B).)\/A ; E32 = E23 = —§CbCOS(A))\/A

L = FF 1
E31 + E3p = —ic.(AH—i—BH).)\/A = _ic'c')\/A — — Fys
Now identify:

X 2A/\
— (123 . A=—1 = T boos(O)
5 Was.ys1 + 223.731)/ /Ry or R a.b.cos(C)
| 2A/\
~(123. . A=-1 = uccos(B)
2(y23 Y12 + T23.712)/ [Rz or Ry a.c.cos(B)
! 2A /A
—(ya1. . A=-—1 = bocos(A)
5 (y31.912 + T31.712)/ /By or By b.c.cos(A)

Thus we can consider the 3 x 3 matrix for diffusion at a triangle as a super-
position of one-dimensional resistor-like elements (an outstanding example of
substructuring, anyway). When assembling these triangle matrices into the
global system, most resistors have to be replaced by two parallel resistors, one
resistor for each side of a triangle, according to the law: 1/R = 1/Rq + 1/Ry.
Exceptions are at the boundary. The main diagonal term in a matrix equals the
sum of the off-diagonal terms. This result can be used as follows: account only
for the off-diagonal terms in the first place. At the very end of the F.E. assem-
bly procedure, sum up each matrix row, in order to obtain the main diagonal
elements.

12



Voronoi Regions

Let A, B, C be the vertices of a triangle, as depicted in the Figure below.

Let P be the middle of AB. Draw the median through P perpendicular to AB.
Let @ be the middle of BC. Draw the median through @ perpendicular to BC.
Let R be the middle of AC. Draw the median through R perpendicular to AC.
Let the coordinates of A be given by (x4,y4).

Let the coordinates of B be given by (z5,ys)-

Let the coordinates of C be given by (z¢, yo).

C

It is well known from planar geometry that the perpendicular medians through
P, @ and R have a common intersection point M. The equations of these lines
are given by:

PM: (z,y) = 3(za +2B,ya +yB) +7.(y5 — ya.24 — TB)

QM : (z,y) =5(xp +2c,y8 +yo) +a.(yc — ys, 78 — 7C)

RM: (z,y) = 3(vc +2a,yc +ya) + B.(ya — yc,vc — xa)

= NI= N

The intersection point M is associated with values for v , o and 3, which are
labelled as vas , apr and By . At first vy and aps will be calculated, by:

1
§($A +2,ya +yB) +ym-(YyB — Y4, TA —TB) =

1
5(663 +zc,yp +yc)+am.(yo — ys,xB — xC)

Giving two equations with two unknowns:

L(xa+2B)+vm.(ys —ya) = 3(xB + 2¢) + am.(yo — yB)
5(a+ys)+ym-(xa —2B) = 5(y +yo) + am.(zB — z¢)

yp—ya  —(Wc—yB) || | _ 1| zc—2a
—(zp —mwa) wCc— 7B an 2| Yo —ya

The matrix at the left side can be inverted, resulting in:

{w]:{xc—m yc—yB] 1[:50—“]/A

—

an TB—TA YB—YA | 2| Yo —ya

13



Where:
A= (zc—2zB)(yp —ya) — (zB —24)(yc — yB)
Hence:

1

v = 5 l(we —2p)(re —2a) + (yo —yB)(ye —ya)l /A

Define 7k, = (1, — zk,yr. — yx) . Then, with an analogous calculation for a s
and an educated guess for 3, we find:

..

Y™ = E(TCA -ToB)/A
1.

ay = E(TAB -Tac)/A
1.

Bu = E(TBA -Tpc) /A

Compare this with our findings in '2-D Resistor Model’:
1

Ey = FEy = *5(’731 - T39) A\/A =—1/R3
1.,

Es3 = FE3p = *5(”'12 -T3) A A=—1/Ry
1.,

Es31 = Fi3 = *5(”'23 -71) A/A=—1/Ry

Withl~A,2~ A ,3~C(C,itis concluded that:
Ay =1/Rs ;3 May =1/Ry ; APy =1/Rs

Assuming that our triangles have non-obtuse angles, we can read from the figure
that vyar, aar, Bar > 0 . In this case:

IANvar-(yB — ya,7a —2B)| = 1/R3.AB = \.PM —

_ AB _ "length” of R3
~ APM conductivity x ”diameter” of R

R3
In very much the same way we can prove that:

_BC _ b, _TA_ b
TAQM MO T T ARM MO,

Ry

Where: [ = length, O = diameter. This gives us a lucid physical interpretation
of the resistances Ry, as they are associated with the linear triangle. It is
also seen now why obtuse angles are more or less unacceptable. In this case
one of the resistances will become negative, meaning that a (heat) current will
flow from a place with low temperature to a place with high temperature, thus
violating the Second Law of Thermodynamics. By ”more or less” we mean that

14



any such obtuse angle should be compensated by a sufficiently sharp one in the
opposite triangle, in such a way that the sum 1/R, + 1/R} of their respective
contributions shall be positive.

Having said all this, we would like to generalize the above result, in order to
include Diffusion as well as Convection. An obvious way to do this, is to make
use of the Resistor model, since the latter effectively sets up a link to the much
simpler one-dimensional theory. As follows. When considering any flux through
PM, the same line segment is associated with a normal vector PM which is
perpendicular to it. Its length is given by:

PM =yy|(yB —ya,x4 — 2B)| = yml(xB — 24.yB — Ya)| = "M AB

This is nice, because PM has also the same direction as AB. Thus we can put:
- - 1, . .
PM = ’)/MAB = 5(7‘31 . 1“32)/A .12

In very much the same way we find:

- 1, ., B .
QM = 5( 12'7“13)/A-7"23

- 1, . .
R]\/f = 5(7'23 . ’I“Ql)/A.’f'gl

The Diffusive flux from (1) to (2) through resistor AB is:

APM .,
Ilg = (Tl — TQ)/R3 = ﬁ(Tl — Tg) = 5(’(‘31 . T‘32)/A.)\(T1 —TZ)

Here (17 — T3) is the temperature-difference between A and B, A = thermal
conductivity (J/m/s/K). Analogously, the Convective flux through resistor
AB is the heat flow coming from (1). It streams through the area PM and
mixes with the fluid in (2). The net effect is:

IS, = p.c.(T- PM).(Ty — T)

Here p = density (kg/m?), ¢ = heat capacity (J/kg/K), ¢ = velocity (m/s),
T}, = local temperature of the fluid (K). Continuing:

]' — — - =
I = P-C-E(T?,l - Ta2) /AT - T12)(Th — T2)

So the expressions for Diffusive flux and Convective flux are very much alike:

IB = \G12.(Ty — Tp)
]162’ == pC(’U F12)-G12-(T1 - Tg)

15



Where G153 = %(’Fgl - T32)/A is a purely geometrical factor, which embodies
the geometry of the triangle. The quotient of Convective and Diffusive flux is
entirely independent of that two-dimensional geometry:

P = p.c(U-7i;)/ A

Here 7j; = 7; — 7; = vector from (¢) to (j). The projection of the velocity vector
on a direction vector replaces the quantity p.c.v.dz/\ in the one-dimensional
theory. Therefore, P may be interpreted, again, as a dimensionless local Péclet
number.

Now the time has come to generalize a result from Patankar’s book [2], namely
the formulas (5.47) from 5.2-7 A Generalized Formulation:

ag = D A(|Pe|) + maz(—Fe,0)

aw = Dy A(|Py|) + maz(+F,,0)

ap :aE—I—aW—F(Fe—Fw)
It will be assumed in the sequel that the continuity equation is valid, hence
F, — F, = 0. The formulas (5.47) are accompanied with several expressions

for the function A(|P|), as given in [2] by Table 5.2 The function A(|P|) for
different schemes:

Central difference A(|P]) =1—-0.5|P|

Upwind A(P|) =1

Hybrid A(|P]) = max(0,1 — 0.5|P))
Power law A(|P]) = maz(0, (1 — 0.1]P|)5)

Exponential (exact) A(|P|) =|P|/ [e:z;p(|P|) —1]

Switching to the Finite Element viewpoint means insisting that assembly of the
F.D. equations shall be done with F.E. matrices, instead of row by row. Here
comes our educated guess of such a matrix:

By Ewn | _ | e —ap
E31  Fa —aw +aw

Since we must be certain that this is indeed the correct matrix, assemble two of
these to a complete equation - which is at the row in the middle - and associate
the proper unknowns:

+ag —ag 0 ow
—aw “+aw +ag —ag op
0 —aw +aw oE

Meanwhile, we have found Linear Triangle equivalents for each of the terms that
constitute ag and aw:



Physical quantities are evaluated at (e/w), corresponding with the middle of the
accompanying resistor elements. A significant detail is the difference between
the + signs in:

—FE13 =ag = D A(|P.]) + maz(—F.,0)
—E21 = aw = Dy A(|Py|) + maz(+Fy, 0)

No reason to bother, however, because when evaluated at the same place:
+Fw = pC(’U _'12) = —pC(’U Fg]_) - _Eij = DUA(‘PU |) —i—max(—Fij, 0)

Further simplification will be achieved by assuming that A is a constant and
dividing the quantities D.,,, = D;; and Fy,,, = Fji; by this conductivity:

Dij/ X = Gij
Pij = p.c.(T-735) /A
Fij/\ = Gij Py

The end result is an F.E. matrix which is suitable for Convection And Diffusion:

[ +Ei2 —FEi2 }

—E21 —|—E21 Where: Eij = Gij [A(|PU|) + maz(O, 7P7lj)]

It is remarked that the above generalization is faithful, meaning that it is reduced
exactly to Patankar’s original scheme, when specialized for a rectangular grid.
(Such a thing is not accomplished, strangely enough, with the F.E. formulation
as devised by Patankar himself in [2] paragraph 8.4-3).

Our theory is accompanied with a sample program, which has been coded in
Delphi Pascal. Heat Transfer is described there by the following PDE:

ar GT} - [62T 02T] o

Pe |u=— - -
e{uax—i—vay

ox? * Oy?

Pe = overall Péclet number, (x,y) = normed coordinates, (u,v) = normed
velocity field, T = temperature.

My favorite sample flow field is given by the conformal (complex) mapping
¢ = 2z?/2. Taking the real and the complex part of it gives rise to a potential
function ¢ and a stream function 1 respectively:

Bry) = 5o o) and la,y) =y

Contours of the functions ¢ and ¢ form two systems of orthogonal hyperbolas.
These hyperbolas are mutually orthogonal where they intersect. The points of
intersection form the basis of a triangular mesh. They are found as follows:

%(zz—yQ):A and zy=B = %xQ—%(B/I)QZA
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= 2* 2422 -B*=0 = 2?=+A24 B2+ A

= :E:\/\/A2+BQ:l:|A| and y=+vz2-2A

The domain of interest is bounded by x-axis, y-axis and relevant outer pieces
of the hyperbolas. The velocity field is derived from either the potential or the
stream function:

_8_¢_8_1/)_m and

. 0w
I T

Ty T T or

Our theory seems to be finished herewith. The rest is a matter of technology.
Accompanying software is supposed to be found at:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/purified.zip

However, the precise location of the ZIP file may be subject to change without
prior notification. Remember: anything free comes without guarantee !
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