Critical Mass Flow

With the fluid tube continuum model, it can be made plausible that the flow
field is approximately incompressible and irrotational:
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Here: u = horizontal velocity component, v = vertical velocity component, r =
horizontal radius, z = vertical distance.

Even more crude than this ideal flow assumption, but - as we shall see - not very
different from it, is the point of view which has been adopted, at that time, by
TA /K at Neratoom. (TA/K = TD/C = Technical Department / Construction)
People seemed to have in mind the following picture of the shell side flow, at
the outlet of the tube bundle for example:

Consider a ring shaped element in the liquid at the outflow area. The inner
radius of this element is equal to the (outer) radius R of the central tube. The
outer radius of the ring is called r and is a variable. The height of the ring
is equal to the height F' of the outflow perforation. The back side of the ring
(central tube) as well as the bottom (tube plate) are solid material. Therefore
the flux through the upper side must always be equal to the flux through the
front side. For the sake of simplicity it is assumed that the medium streams
into the ring with a constant mid-bundle velocity, which may be normed to 1.
The velocity component u can now be calculated from:
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Thus the total mass flow coming in from the bundle is balanced with the mass
flow going out through the outflow perforation. We will demonstrate now that
this primitive picture of the flow field does correspond anyway with the ideal
flow picture developed by TA/SWO (= TD/FHT = Technical Department /
Fluid flow and Heat Transfer). Assume for the component v that it is linear
with z in the axial direction, which is the simplest possible assumption. The



other component u is already known:
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It can be checked out easily that this field (u(r),v(z)) is indeed a solution of the
partial differential equations describing ideal flow in a cylindrically symmetric
geometry. Yet there is a little flaw in this reasoning. At the upper side of the
perforation F', namely, the vertical component v becomes —1, the mid-bundle
velocity, as it should. However, the horizontal component u suddenly becomes
zero ! Giving rise to a kink in the streamlines, which is physically impossible,
of course. Nevertheless, when considered as a crude first approximation, the
TA /K approach is not so bad after all.

So far so good for the flow field. The equations for Heat Transfer in the fluid
tube continuum are repeated for convenience:
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Here: ¢ = heat capacity; G = mass flow; T = temperature; (r,z) = cylinder
coordinates; (u,v) = normed velocities; a = total heat transfer coefficient; P =
primary; S = secondary. The boundary conditions should not be forgotten:

Tp = Tpy, at the primary inlet (upper perforation)

Ts = Tsg at the secondary inlet (tube plate below)

This system of PDE’s serves as framework of exactness, upon which methods of
Numerical Analysis can be based. But, on the other hand, what could be wrong
with trying to describe certain physical phenomena with well-known methods
of classical calculus, instead of numerically ?

To begin with, the heat transfer equations can be integrated exactly at the less
interesting part of the tube bundle, where the flow streams parallel to the tubes
and thus is no longer two-dimensional. For that mid-bundle area, a so-called
one-tube model can be employed, which turns out to be a system of two coupled
ordinary differential equations. Such a system can be solved by standard means.
There is nothing new here.

But, apart from the parallel flow area, analytival solutions can be found for
some other places in the heat exchanger. Such a solution can be constructed
rather easily for a streamline which runs from the join between the central tube
and the lower tube plate towards the outflow perforation:
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The equations there reduce to an ordinary differential equation for primary
temperatures, because the secondary temperature is a boundary condition. In
addition, we have an expression for the flow distribution in place, according to
the TA/K model. Substitution of the latter leads to:
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The solution of such an ordinary differential equation is routinely found with
Operator Calculus:

P | 2rFa/(cGp)

d/]" 7“2 — R2 :| (TP - TSO) = 0

The following term must be integrated:
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Herewith, the differential equation is transformed into:
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And the solution of it is:
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Furthermore, K is a (rather) unknown constant. Because (r?/R? — 1) becomes
zero in the corner for r = 0 and the quantity —H is a negative power, it must
be concluded that the solution is singular. Well, of course not ! Infinities of
this nature cannot exist, at all, in a heat exchanger. There are no black holes
in a simple chemical apparatus. On physical grounds, we can be absolutely
certain that all temeratures are in between the following bounds: Tsg, the



secondary inlet-temperature and 1'py,, the primary inlet-temperature. Therefore
we must conclude that the constant K can be nothing else but zero. As a
consequence herefrom, along the streamline at the bottom of the apparatus:
Tp = Tso. Meaning that the primary temperature is equal to the secondary
inlet-temperature everywhere at the lower tube plate.

But now it seems that we have gone a bit too far. To refresh our memory, the
fluid tube continuum model is meant to be a crude model of a discrete reality.
Therefore we should always put question marks at the validity of the model.
Especially, attention is required as soon as singularities become apparent in
the model. Spots at which singularities occur are suspect without question.
Infinities cannot physically exist anyway. But instead of assigning immediately
the null-solution, we should think of another possibility. A singularity can also
be a signal that our continuum hypothesis is no longer a valid assumption, for
certain spots in the model. It is clear that, with the fluid tube continuum
model, the solution is an approximation only for infinitesimal volumina with a
size greater than the pitch bewteen tubes. If we smear out the solution over a
ring with size s (of the pitch), then it should approximately be the same solution
again. Let this be exemplified for our abovementioned analytical solution (where
it is assumed for convenience that H # 1):
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Here s = the pitch of the tube bundle; H = F.a/(c.Gp). Quite another picture
is emerging now. The singularity becomes weakened by smearing it out over the
pitch. Two distinct cases can be distinguished:

1. H > 1. Still a true singularity. The conclusions about the null-solution
remain valid: Tp = Tgq.

2. H < 1. The singularity doesn’t exist anymore. Conclusions about the
null-solution are likely to be invalid. The primary temperature doesn’t become
coincident with the secondary temperature everywhere: Tp # Tsq.

The condition H < 1 means that F.a/c.Gp < 1 or ¢.Gp > F.a. The physical
meaning of the latter is that the primary mass flow is so large that the heat
contained in it can mot be transferred over a height F' within the distance s,
which is the pitch between the tubes. But this in turn means that one of the
basic conditions of the continuum model is no longer valid. The ” differential” s
between the tubes becomes sensible, so to speak. The primary medium, locally,
is not "really” continuous anymore. The discrete substrate, the fine structure
of the bundle is no longer ”invisible”.

We could call the value Gp, where c.Gp = F.a, a critical mass flow. It is



a nice excercise to actually calculate this critical mass flow for a real world
heat exchanger, which happens to be the Neratoom THX (Intermediate Heat
Exchanger). The THX was meant to operate in the hot leg of a Liquid Metal
Fast Breeder Reactor (LMFBR), namely SNR-300 in Kalkar, West-Germany:

program test;

function kritieke : double;

const
NP : double = 846 ; { number of tubes }
DU : double = 0.0210 ; { outer diameter of tubes }

DI : double = 0.0182 ; { inner diameter of tubes }
L : double = 20 ; { length of tube bundle }

F : double = 0.370 ; { height of outflow perforation }
C : double = 1275; { heat capacity of sodium }

var
A : double;

begin

A := NP*2xPIxL/1n(DU/DI);
kritieke := F*A/C;
end;

begin
Writeln(kritieke:4:1,’ kg/s’);
end.

The outcome is: Gp = 215.6 kg/s . The fine structure of the IHX tube bundle
may have been observable, since large scale physical experiments, with primary
mass flows varying between 80 and 360 kg/s, have been actually carried out.
And our calculated value of the critical mass flow is clearly in that range. Thus
the discrete substrate of the fluid tube continuum could have been sensible as
such. Historical note. These experiments were carried out, in the seventies, at
the 50 MW test facility in Hengelo, the Netherlands. The test facility has been
employed by Neratoom and TNO.



