
Fuzzyfied Lissajous Analysis

Contours are obtained routinely from the processing of black and white images.
This chapter is concerned with topics on Lissajous Figures, especially those
obtained by Fourier Analysis of closed curves or contours. This results in the
insight that every such closed curve is approximated by a superposition of Lis-
sajous Ellipses and simple formulas can be derived for zero’th, first and second
order momenta, in terms of the Fourier coefficients alone.

Lissajous Series

Consider a contour in the plane, consisting of a pair of coordinate functions
(x, y)(t), where t is the running parameter. It is an important fact that any
such contour is a closed curve without self-intersection: a Jordan curve. Because
the contour is closed, each of the functions x(t) and y(t) can be considered as
being periodic with period L, where L is the length of just one walk around the
contour. Consequently, the functions x(t) and y(t) each can be developed into
a Fourier series:

x(t) =
1
2
Ax(0) +

∞∑
k=1

[
Ax(k) cos

(
k

2π
L
t

)
+Bx(k) sin

(
k

2π
L
t

)]

y(t) =
1
2
Ay(0) +

∞∑
k=1

[
Ay(k) cos

(
k

2π
L
t

)
+By(k) sin

(
k

2π
L
t

)]
To be taken together as:[
x(t)
y(t)

]
=

1
2

[
Ax(0)
Ay(0)

]
+
∞∑
k=1

{[
Ax(k)
Ay(k)

]
cos

(
k

2π
L
t

)
+
[
Bx(k)
By(k)

]
sin

(
k

2π
L
t

)}
Where the Fourier coefficients are to be evaluated, according to:[

Ax(k)
Ay(k)

]
=

1
1
2L

∫ L

0

[
x(t)
y(t)

]
cos

(
k

2π
L
t

)
dt

[
Bx(k)
By(k)

]
=

1
1
2L

∫ L

0

[
x(t)
y(t)

]
sin

(
k

2π
L
t

)
dt

It is remarked that this Fourier series is quite analogous - if not to say: merely
equal - to a superposition of Lissajous figures. These Lissajous figures share the
common midpoint 1

2 [Ax(0), Ay(0)]. The lowest (except zero) order figure is an
ellipse (perhaps a degenerated one. Meaning, for example, that a circle can be
described completely with just one more term of the series.)
With Pattern Recognition in pictures, contours are obtained in a discrete form.
Therefore it is advantageous to evaluate the integrals of the Fourier/Lissajous
coefficients numerically. Because the discrete coordinates of the contour points
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are obtained as midpoints of pixel boundaries, midpoint integration preferrably
may be employed: [

Ax(k)
Ay(k)

]
=

1
1
2L

L∑
m=1

[
xm
ym

]
cos

(
k

2π
L
m

)
[
Bx(k)
By(k)

]
=

1
1
2L

L∑
m=1

[
xm
ym

]
sin

(
k

2π
L
m

)
Where it is remarked that the dt increments are equal to 1 .
With a Lissajous series expansion, the differential geometry of a contour is an
easy job. Set ω = 2π/L and start with:[
x(t)
y(t)

]
=

1
2

[
Ax(0)
Ay(0)

]
+
∞∑
k=1

{[
Ax(k)
Ay(k)

]
cos(kωt) +

[
Bx(k)
By(k)

]
sin(kωt)

}
=⇒

[
x′(t)
y′(t)

]
=
∞∑
k=1

{[
Ax(k)
Ay(k)

]
(−kω)sin(kωt) +

[
Bx(k)
By(k)

]
(+kω)cos(kωt)

}
It looks like if, for k > 0 :[

A′x(k)
A′y(k)

]
= kω

[
Bx(k)
By(k)

]
and

[
B′x(k)
B′y(k)

]
= −kω

[
Ax(k)
Ay(k)

]
Suggesting a recursive method like:[

A
(n+1)
x (k)

A
(n+1)
y (k)

]
= kω

[
B

(n)
x (k)

B
(n)
y (k)

]
and

[
B

(n+1)
x (k)

B
(n+1)
y (k)

]
= −kω

[
A

(n)
x (k)

A
(n)
y (k)

]
Where: [

B
(0)
x (k)

B
(0)
y (k)

]
=
[
Bx(k)
By(k)

]
and

[
A

(0)
x (k)

A
(0)
y (k)

]
=
[
Ax(k)
Ay(k)

]

Fuzzyfied Lissajous

Summation instead of integration will be valid, as long as the discretization
interval is much smaller than the period of the sine and cosine functions in the
series, which is L/k. It will be demonstrated now that this condition is met in
a very natural way if fuzzyfied contours are considered instead:[

x(t)
y(t)

]
=
∫ +∞

−∞

[
x(τ)
y(τ)

]
1

σ
√

2π
e−

1
2 (t−τ)2/σ2

dτ

(not only) In this case, it’s easier to work with complex Fourier coefficients:[
cx(k)
cy(k)

]
=

1
L

∫ + 1
2L

− 1
2L

[
x(t)
y(t)

]
ei kω t dt
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Where ω = 2π/L . Exchange the integral signs and look what happens:[
cx(k)
cy(k)

]
=

1
L

∫ + 1
2L

− 1
2L

{∫ +∞

−∞

[
x(τ)
y(τ)

]
1

σ
√

2π
e−

1
2 (t−τ)2/σ2

dτ

}
ei kω t dt =

1
L

∫ +∞

−∞

[
x(τ)
y(τ)

]{∫ + 1
2L

− 1
2L

1
σ
√

2π
e−

1
2 (t−τ)2/σ2

ei kω t dt

}
dτ

Concentrate on the exponential functions:

e−
1
2 (t−τ)2/σ2

ei kω t = e−
1
2 (t−τ)2/σ2+i kω t

Where:

−1
2

(t− τ)2/σ2 + i kω t = − 1
2σ2

[
(t− τ)2 − 2σ2i kω t

]
=

− 1
2σ2

[
(t− τ)2 − 2σ2i kω (t− τ) +

(
σ2i kω

)2]
+ i kω τ +

1
2σ2

(
σ2i kω

)2
=

− 1
2σ2

[
(t− τ)− σ2i kω

]2
+ i kω τ − 1

2
(σkω)2

Hence:
e−

1
2 (t−τ)2/σ2

ei kω t = e−
1
2 [(t−τ)−σ2i kω]2/σ2

ei kω τe−
1
2 (σkω)2

Giving [cx(k), cy(k)] =

e−
1
2 (σkω)2 1

L

∫ +∞

−∞

[
x(τ)
y(τ)

]{∫ + 1
2L

− 1
2L

1
σ
√

2π
e−

1
2 [t−(τ+σ2i kω)]2/σ2

dt

}
ei kω τdτ

Here it is seen (: Appendix) that the integral between { } is just equal to one,
provided that the interval

[
− 1

2L,+
1
2L
]

is large enough - ”approximates infinity”,
so to speak - when compared with σ:

[
− 1

2L/σ,+
1
2L/σ

]
≈ [−∞,+∞] . Then:[

cx(k)
cy(k)

]
= e−

1
2 (σkω)2 1

L

∫ + 1
2L

− 1
2L

[
x(τ)
y(τ)

]
ei kω τdτ

This is the end-result:[
cx(k)
cy(k)

]
= e−

1
2 (σkω)2

[
cx(k)
cy(k)

]
where: ω =

2π
L

Where [cx, cy] denote the Fourier coefficients of the ”sharpened” contour. With
other words: the Fourier coefficients of the fuzzyfied contour are just equal
to those of the sharpened contour, provided that the latter are multiplied
with a factor exp(− 1

2σ
2k2ω2) . Expressed somewhat differently: the function

exp(− 1
2σ

2ω2
k) acts as a filter for the frequencies ωk = k.2π/L . It is clear from

this formula that the higher frequencies are damped rather quickly. To be more
precise: they can be neglected if k > L/σ , because then exp(− 1

2σ
2k2ω2) is

smaller than exp(−2π2) ≈ 10−9 . This means that L/σ - length divided by
spread - is actually an upper bound for the number of significant terms in the
Fourier series of a fuzzyfied contour.
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Lissajous Ellipses

The Fourier series of a closed contour can be written as follows:

x(t) =
1
2
Ax(0) +

∞∑
k=1

xk(t) and y(t) =
1
2
Ay(0) +

∞∑
k=1

yk(t)

Where:

xk(t) = Ax(k) cos
(
k

2π
L
t

)
+Bx(k) sin

(
k

2π
L
t

)
yk(t) = Ay(k) cos

(
k

2π
L
t

)
+By(k) sin

(
k

2π
L
t

)
But let us first recall the definition of the first order moment - also known as
mean or midpoint or center of gravity:[

x
y

]
=

1
L

∫ L

0

[
x(t)
y(t)

]
dt

Here L is the length of the contour. Zero’th order Fourier coefficients are rec-
ognized at the right hand side. It follows that:

1
2

[
Ax(0)
Ay(0)

]
=
[
x
y

]
Now create a shorthand notation, with x = xk(t) , y = yk(t) , ax = Ax(k) ,
bx = Bx(k) and ω = k 2π/L . And concentrate on the higher order Fourier
terms (with k > 0):

x = ax cos(ωt) + bx sin(ωt)

y = ay cos(ωt) + by sin(ωt)

Multiply the first equation with ay, the second with ax and substract. The
result is:

ayx− axy = (aybx − axby) sin(ωt) =⇒ sin(ωt) =
ayx− axy
aybx − axby

Multiply the first equation with by, the second with bx and substract. The result
is:

byx− bxy = (byax − bxay) cos(ωt) =⇒ cos(ωt) =
byx− bxy
byax − bxay

Now use the well known identity:

cos2(ωt) + sin2(ωt) = 1

Giving: (
byx− bxy
byax − bxay

)2

+
(
ayx− axy
aybx − axby

)2

= 1
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This is a unit circle (x′)2 +(y′)2 = 1 in a transformed coordinate system, which
is given by: [

x′

y′

]
=
[

by −bx
−ay ax

]
/(byax − bxay)

[
x
y

]
The inverse transformation is:[

x
y

]
=
[
ax bx
ay by

] [
x′

y′

]
= x′

[
ax
ay

]
+ y′

[
bx
by

]
A unit circle which is distorded by such a linear transformation can only be an
ellipse. It is concluded herefrom that the Lissajous series of any closed contour
consists of a superposition of ellipses, each of which is traversed with a different
speed. More precisely. Starting at the midpoint with k = 0, make k := k + 1
and create an ellipse (k) around that midpoint, with skewed axes ~a(k),~b(k) .
Take the endpoint of the vector ~a.cos(kωt) +~b.sin(kωt) as a new midpoint and
repeat the procedure, starting again at k := k + 1 .

Change of Phase

The choice of the origin of the running parameter in a contour, where it starts
to run, or t = 0 in (x(t), y(t)) , is quite arbitrary. It may be questioned therefore
how Fourier coefficients A,B are modfied due to a phase change, that is: the
choice of a different origin t = τ . Straightforward calculation shows that it goes
like this:

A{f(t+ τ)}
B{f(t+ τ)} =

1
1
2L

∫ + 1
2L

− 1
2L

f(t+ τ)
cos(ωt)
sin(ωt) dt =

1
1
2L

∫ + 1
2L

− 1
2L

f(t+ τ)
cos(ω [t+ τ − τ ])
sin(ω [t+ τ − τ ]) d(t+ τ) =

1
1
2L

∫ + 1
2L+τ

− 1
2L+τ

f(p)
cos(ω [p− τ ])
sin(ω [p− τ ]) dp =

1
1
2L

∫ + 1
2L

− 1
2L

f(t)
cos(ω [t− τ ])
sin(ω [t− τ ]) dt =

1
1
2L

∫ + 1
2L

− 1
2L

f(t)
[
cos(ωt)cos(ωτ) + sin(ωt)sin(ωτ)
sin(ωt)cos(ωτ)− cos(ωt)sin(ωτ)

]
dt =

[
cos(ωτ)
−sin(ωτ)

]
1

1
2L

∫ + 1
2L

− 1
2L

f(t)cos(ωt) dt+
[
sin(ωτ)
cos(ωτ)

]
1

1
2L

∫ + 1
2L

− 1
2L

f(t)sin(ωt) dt

=⇒
[
A{f(t+ τ)}
B{f(t+ τ)}

]
=
[

cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

] [
A{f(t)}
B{f(t)}

]
With other words: shifting a function over a distance (τ) in real (1-D or 2-D)
space corresponds with rotating its vector (A,B) of Fourier coefficients over an
angle with magnitude (ωτ). With this knowledge, write the Lissajous ellipses
as follows: [

x y
] [ by −ay
−bx ax

]
/D

[
by −bx
−ay ax

]
/D

[
x
y

]
= 1
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Where D = byax − bxay is a determinant. It follows that:

[
x y

] [ ax bx
ay by

]−T [
ax bx
ay by

]−1 [
x
y

]
= 1

Where T denotes the transpose. With the rule (AB)−1 = B−1A−1, it follows
that: [

x y
]([ ax bx

ay by

] [
ax bx
ay by

]T)−1 [
x
y

]
= 1

Now replace the coefficients (a, b) with coefficients which are subject to a change
of phase. That is: the running parameter t is shifted over a distance τ along
the curve. This means that the accompanying Fourier coefficients are rotated
over an angle (ωτ):[

A{x(t+ τ)}
B{x(t+ τ)}

]
=
[

cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

] [
A{x(t)}
B{x(t)}

]
And: [

A{y(t+ τ)}
B{y(t+ τ)}

]
=
[

cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

] [
A{y(t)}
B{y(t)}

]
This can be summarized as:[

ax(+τ) ay(+τ)
bx(+τ) by(+τ)

]
=
[

cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

] [
ax ay
bx by

]
Repeat the expression for the ellipse, after a slight modification:

[
x y

]([ ax ay
bx by

]T [
ax ay
bx by

])−1 [
x
y

]
= 1

Shift the running parameter over a distance (τ) and apply the matrix transpo-
sition rule (AB)T = BTAT , then:[

ax(+τ) ay(+τ)
bx(+τ) by(+τ)

]T [
ax(+τ) ay(+τ)
bx(+τ) by(+τ)

]
=

[
ax ay
bx by

]T [
cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

]T [
cos(ωτ) sin(ωτ)
−sin(ωτ) cos(ωτ)

] [
ax ay
bx by

]
=

[
ax ay
bx by

]T [
ax ay
bx by

]
Because the transpose of an orthogonal matrix is equal to its inverse and the
product of the original matrix and its inverse is equal to the unity matrix.
This proves that the orientation as well as the shape of any Lissajous ellipse is
invariant for a shift in the running parameter.
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Ellipses Invariants

We will take a closer look now at each of the Lissajous ellipses. First recall:(
byx− bxy
byax − bxay

)2

+
(
ayx− axy
aybx − axby

)2

= 1 =⇒

b2yx
2 − 2bybxxy + b2xy

2 + a2
yx

2 − 2ayaxxy + a2
xy

2

(axby − aybx)2
=

(b2y + a2
y)x2 − 2(bybx + ayax)xy + (b2x + a2

x)y2

(axby − aybx)2
= 1

The matrix accompanying this quadratic form is:

Q =
[

(b2y + a2
y) −(bybx + ayax)

−(bybx + ayax) (b2x + a2
x)

]
/(axby − aybx)2

The determinant of the matrix, without the denominator, is calculated:

(b2y + a2
y)(b2x + a2

x)− (bybx + ayax)2 =

(b2yb
2
x + b2ya

2
x + a2

yb
2
x + a2

ya
2
x)− (b2yb

2
x + 2bybxayax + a2

ya
2
x) =

a2
xb

2
y − 2axbyaybx + a2

yb
2
x = (axby − aybx)2

The outcome just happens to be equal to the denominator. This makes inverting
the matrix an easy thing to do:

Q−1 =
[

(a2
x + b2x) (bybx + ayax)

(bybx + ayax) (a2
y + b2y)

]
The axes of the ellipses have lengths which are equal to the squares of the
eigenvalues of the above inverse matrix, according to the template:(

x√
λ1

)2

+
(

y√
λ2

)2

= 1

The characteristic equation is:∥∥∥∥ (a2
x + b2x)− λ (bybx + ayax)

(bybx + ayax) (a2
y + b2y)− λ

∥∥∥∥ = 0 =⇒ λ2 − Spλ+Det = 0

Where the trace of the matrix is defined by:

Sp = (a2
x + b2x) + (a2

y + b2y) = (a2
x + a2

y) + (b2x + b2y)

And its determinant has already been calculated to be:

Det = (a2
x + b2x)(a2

y + b2y)− (bybx + ayax)2 = (axby − aybx)2
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The eigenvalues are solutions of the quadratic equation, giving:

λ =
Sp

2
±

√(
Sp

2

)2

−Det

Since the axes of the ellipses are the square roots of these eigenvalues, it remains
to show that the expression under the square root is positive (though the latter
should already be clear from the fact that the characteristic matrix is symmetric
and positive definite). We have implicitly found that:

(a2
x + b2x)(a2

y + b2y) ≥ (axby − aybx)2

It is legal to replace, in the discriminant, the determinant by something which
is bigger. And to prove that the outcome is still positive:(

Sp

2

)2

−Det ≥

(
(a2
x + a2

y) + (b2x + b2y)
2

)2

− (a2
x + b2x)(a2

y + b2y) ≥ 0

Substitute for simplicity the abbreviations A = a2
x + a2

y and B = b2x + b2y .
Then we have to prove:(
A+B

2

)2

−AB =
A2

4
+
AB

2
+
B2

4
−AB =

A2

4
− AB

2
+
B2

4
=
(
A−B

2

)2

≥ 0

Quod Erat Demonstrandum. Hence the lengths of the axes of the ellipses can
safely be calculated to be:

√
λ =

√√√√Sp

2
±

√(
Sp

2

)2

−Det

With:
Sp = (a2

x + a2
y) + (b2x + b2y) and Det = (axby − aybx)2

As far as the accompanying eigenvectors are concerned, it makes no difference,
essentially, whether the first or the second row of the matrix is used:

(a2
x + b2x − λ)x+ (bybx + ayax)y = 0 or (bybx + ayax)x+ (a2

y + b2y − λ)y = 0

If the first one is taken, then:[
1
2

(a2
x + b2x)− 1

2
(a2
y + b2y)±

√
D

]
x+ (bybx + ayax)y = 0

Where D = (Sp/2)2 −Det . Define even more shorthand variables:

A =
1
2

(a2
x + b2x)− 1

2
(a2
y + b2y)±

√
D and B = (bybx + ayax)
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And form normed (length = 1) solutions. Then the eigenvectors are:

Ax+By = 0 =⇒ (x, y) =
(B,−A)√
A2 +B2

If a and b are the (lengths of the mutually perpendicular main) axes of an
ellipse, then its area is given by π.a.b. In our case a =

√
λ1 and b =

√
λ2 , thus

π.a.b = π
√
λ1.λ2 = π.

√
Det = ± (bxay − axby) . A more precise analysis will

remove the ± sign ambiguity, in the next subsection.
The two quantities

√
a2
x + a2

y + b2x + b2y and (bxay − axby) may be called the

Lissajous Invariants of (the k-th term of) the Fourier expansion. They are
quite independent of the running parameter (t) and the origin where it starts
to run at the curve, phase independent so to speak. They are also independent
of any translations & rotations of the coordinate system.

Bessel’s Inequality

The following facts are well known from the theory of Fourier Series. Bessel’s
Inequality reads as follows:

1
1
2L

∫ + 1
2L

− 1
2L

f2(t) dt ≥ 1
2
a2

0 +
∞∑
k=1

(
a2
k + b2k

)
>

1
2
a2

0 +
N∑
k=1

(
a2
k + b2k

)
Here a and b are the Fourier Coefficients of the function f . The equal sign
is valid for piecewise continuous functions which are differentiable to the left
and to the right (except for a few isolated points) and the inequality is then
called the Theorem of Parceval. Parceval’s Theorem may be conceived as the
equivalent of the famous theorem by Pythagoras, for infinite dimensional vector
spaces. Kind of an integral difference between the function and its Fourier series
is given by:

1
1
2L

∫ + 1
2L

− 1
2L

{
f(t)−

[
1
2
a0 +

∞∑
k=1

akcos(kωt) + bksin(kωt)

]}2

dt =

1
1
2L

∫ + 1
2L

− 1
2L

f2(t) dt−

[
1
2
a0 +

N∑
k=1

(
a2
k + b2k

)]
> 0

Leading to a suitable criterion for the accuracy of the Fourier approximation,
which is the (square root of the) above divided by:

1
1
2L

∫ + 1
2L

− 1
2L

f2(t) dt

For the Lissajous approximation of piecewise continuous curves, we must replace
f(t) by x(t) as well as y(t), and sum up the results.
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An interesting side effect is that Parceval’s theorem will enable us to express
the second order moments of a closed curve in its Fourier Coefficients only:[

x2

y2

]
=

1
L

∫ L

0

[
x2(t)
y2(t)

]
dt

The integrals differ from those in the Bessel/Parceval Theorem only by a factor
1/2 . Thus we find:

x2 =
1
4
A2
x(0) +

1
2

∞∑
k=1

[
A2
x(k) +B2

x(k)
]

Where A2
x(0)/4 is recognized as a second order moment of the midpoint. If we

restrict attention to moments of intertia with respect to the center of gravity, as
is common practice, then:

x2 − x2 =
1
2

∞∑
k=1

[
A2
x(k) +B2

x(k)
]

Quite analagously:

y2 − y2 =
1
2

∞∑
k=1

[
A2
y(k) +B2

y(k)
]

And since xy is like an inner product in an infinite dimensional vector space
with an orthogonal base of sin and cos functions, we may also safely infer that:

xy − x y =
1
2

∞∑
k=1

[Ax(k)Ay(k) +Bx(k)By(k)]

The area A inside a contour may be defined analytically as:

A =
∫ L

0

(x.dy − y.dx) =
∫ L

0

(x.y′ − x′.y)dt

Here the functions x(t) and y(t) will developed again as Fourier series. The
integrals then behave as inner products with an orthogonal base:

A =
1
2
L(~x · ~y′)− 1

2
L(~x′ · ~y)

Resulting in expressions like with xy :

A =
1
2
L .

1
2

∞∑
k=1

[
Ax(k)A′y(k) +Bx(k)B′y(k)

]

−1
2
L .

1
2

∞∑
k=1

[A′x(k)Ay(k) +B′x(k)By(k)]
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Body workout:

A =
1
4
L
∞∑
k=1

[Ax(k)(−kω)By(k) +Bx(k)(kω)Ay(k)

−(−kω)Bx(k)Ay(k)− (kω)Ax(k)By(k)] =

1
4
L

2π
L

∞∑
k=1

k [−Ax(k)By(k) +Bx(k)Ay(k) +Bx(k)Ay(k)−Ax(k)By(k)] =

π

∞∑
k=1

k [Bx(k)Ay(k)−Ax(k)By(k)] =
∞∑
k=1

k.πDetk

Here πDetk is recognized as the area of a Lissajous Ellipse. The variable k may
be interpreted as the number of times the circumference of a such an ellipse
is traversed, while the original curve is traversed exactly one time. Hence k
may also be called the winding number of the Lissajous Ellipse. This leads to
the remarkably simple result that the area inside a contour is equal to the sum
of the areas of the accompanying Lissajous Ellipses, where each area must be
multiplied by its proper winding number.

Complex Formulation

The definition of a Lissajous series is repeated:[
x(t)
y(t)

]
=

1
2

[
Ax(0)
Ay(0)

]
+
∞∑
k=1

{[
Ax(k)
Ay(k)

]
cos

(
k

2π
L
t

)
+
[
Bx(k)
By(k)

]
sin

(
k

2π
L
t

)}
Where the Fourier coefficients are to be evaluated, according to:[

Ax(k)
Ay(k)

]
=

1
1
2L

∫ L

0

[
x(t)
y(t)

]
cos

(
k

2π
L
t

)
dt

[
Bx(k)
By(k)

]
=

1
1
2L

∫ L

0

[
x(t)
y(t)

]
sin

(
k

2π
L
t

)
dt

Complex Formulation starts here. It follows that:

x(t) + i.y(t) =
1
2

[Ax(0) + i.Ay(0)]

+
∞∑
k=1

{
[Ax(k) + i.Ay(k)] cos

(
k

2π
L
t

)
+ [Bx(k) + i.By(k)] sin

(
k

2π
L
t

)}
Define the angular (ground) frequency ω = 2π/L and complex quantities

γ(t) = x(t) + i.y(t)
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A(k) = Ax(k) + i.Ay(k) ; B(k) = Bx(k) + i.By(k)

Then the above is the same as:

γ(t) =
1
2
A(0) +

∞∑
k=1

{A(k) cos(kωt) +B(k) sin(kωt)}

Substitute well known complex equivalents for sine and cosine:

γ(t) =
1
2
A(0) +

∞∑
k=1

{
A(k)

e+ikωt + e−ikωt

2
+B(k)

e+ikωt − e−ikωt

2i

}
=⇒

γ(t) =
1
2
A(0) +

1
2

∞∑
k=1

{
[A(k)− i.B(k)] e+ikωt + [A(k) + i.B(k)] e−ikωt

}
From the definitions of the Fourier coefficients and those of A and B :

A(k) =
1

1
2L

∫ L

0

γ(t) cos(kωt) dt ; B(k) =
1

1
2L

∫ L

0

γ(t) sin(kωt) dt

Define:

ck =
A(k)− i.B(k)

2
=

1
L

∫ L

0

γ(t) [cos(kωt)− i.sin(kωt)] dt =⇒

ck =
1
L

∫ L

0

γ(t) e−ikωtdt

Consequently, for values of k negative and zero:

c−k =
1
L

∫ L

0

γ(t) e+ikωtdt =

1
L

∫ L

0

γ(t) [cos(kωt) + i.sin(kωt)] dt =
A(k) + i.B(k)

2

c0 =
1
L

∫ L

0

γ(t)dt =
1
2
A(0)

Giving as the end result:

γ(t) =
+∞∑

k=−∞

ck e
ikωt

Where as before:

ck =
1
L

∫ L

0

γ(t) e−ikωtdt
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Great simplification, but we are not finished, not yet. Instead of t, take τ as
the running parameter, where τ = 2π.t/L = ω t . Then:

ck =
1

2π

∫ 2π

0

γ(τ) e−ikτ dτ

γ(τ) =
+∞∑

k=−∞

ck e
ikτ =

+∞∑
k=−∞

ck z
k where z = eikτ

Define the complex function f as a Laurent series:

f(z) =
+∞∑

k=−∞

ck z
k =⇒ γ(t) = f(eit)

And the coefficients ck are evaluated as:

ck =
1

2π

∫ 2π

0

f(eit)
(
eit
)−k

dt

=
1

2πi

∫ 2π

0

f(eit)

(eit)k+1
d(eit) =

1
2πi

∫
γ

f(z)
zk+1

dz

Where γ(t) = eit. In ”Complex Made Simple” by David C. Ullrich, it is read
on page 42: ”the restriction of a power series [ Laurent series actually (HdB) ]
to a circle is a Fourier series”. And the last formula above is a special case of
Cauchy’s Integral Formula (e.g. Theorem 2.6 on CMS page 28).

Appendix

The fact that the integral between curly brackets is equal to one is a simple,
but nevertheless remarkable, application of Cauchy’s Integral Theorem. It is
conjectured that, for L large enough:∫ + 1

2L

− 1
2L

1
σ
√

2π
e−

1
2 [t−(τ+σ2i kω)]2/σ2

dt = 1

With real spread σ > 0 . The integral is written for our purpose as:∫ +∞

−∞

1
σ
√

2π
e−

1
2 (t−µ)2/σ2

dt = 1

The conjecture is well known to be true for µ being a real number. But, in our
case, µ is complex instead of real. Let’s write it as µ = a + i.b . And consider
the following line integral in the complex plane. It is zero because of Cauchy’s
Integral Theorem for functions holomorphic in the whole complex plane:∫

γ

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz = 0
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Where the path γ is defined as follows, with −R < <(µ) < +R :

And thus the path integral consists of the following parts:∫
γ

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz =∫
γ1

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz +
∫
γ2

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz+∫
γ3

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz +
∫
γ4

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz

Where: ∫
γ1

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz =
∫ +R

−R

1
σ
√

2π
e−

1
2 [x−(a+i.b)]2/σ2

dx

∫
γ2

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz =
∫ b

0

1
σ
√

2π
e−

1
2 [+R+i.y−(a+i.b)]2/σ2

i.dy∫
γ3

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz =
∫ −R

+R

1
σ
√

2π
e−

1
2 [x−a]2/σ2

dx∫
γ4

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz =
∫ 0

b

1
σ
√

2π
e−

1
2 [−R+i.y−(a+i.b)]2/σ2

i.dy

The integral along γ3 is the well known one and is equal to 1. If the integrals
along γ2 and γ4 can be ”talked zero” (i.e. argued to converge to zero if R
approaches infinity) then we are finished, because in that case:∫ +R

−R

1
σ
√

2π
e−

1
2 [x−(a+i.b)]2/σ2

dx =
∫ +R

−R

1
σ
√

2π
e−

1
2 [x−a]2/σ2

dx = 1

So let’s finish the job. The ML theorem is employed for this purpose.∣∣∣∣∣
∫
γ2,4

1
σ
√

2π
e−

1
2 (z−µ)2/σ2

dz

∣∣∣∣∣ =

∣∣∣∣∣±
∫ b

0

1
σ
√

2π
e−

1
2 [±R+i.y−(a+i.b)]2/σ2

i.dy

∣∣∣∣∣ ≤
1

σ
√

2π
e−

1
2 [(R−a)2+b2]2/σ2

.b → 0 for R→∞

After having done all this comes Robert Israel, who simply says the following:

Assuming sigma > 0, it’s true. By easy estimates, the integral is analytic

(as a function of mu). An entire function that is constant on the real axis

is constant.

http://groups.google.nl/group/sci.math/browse_frm/thread/d4226628f043be82/

14



Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
Would someone please help me to get rid of the above disclaimers ?
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