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Well, that’s what I suggested.

It then leaves us, because it is now continuous,

with the need to find an identity for

the anti-derivative of a(t).b(t).c(t). I know of none

apart from applying Integration By Parts twice, but, as has

been pointed out, it is erroneous to evaluate a definite integral
prematurely before determining the total anti-derivative.

Those (Ullrich, Daestrom) who tried to correct me upon the
Integration By Parts themselves made the error of arguing

a posteriori by applying the result of a definite integral in order
to determine an anti-derivative upon which the definite

integral depended.

"Han de Bruijn" <Han.deBruijn@DTO.TUDelft.NL> wrote in message
news:cp98nt$ksgPl@news.tudelft.nl. ..
Airy R. Bean wrote:

> We are stuck on the evaluation of int -oo”+oo f(t).d(t).e (-st)

No guarantee, just a try. Maybe the misunderstanding is in the d(t).
As you define it, is it the Gaussian function with a very small spread?

Han de Bruijn
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OK. Let’s do just that. Define the delta function - what’s in a name - by:
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The laplace integral to be calculated is then:
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The exponent of the exponential function is worked out separately, as follows:
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The term (T — s.02) will be abbreviated as p . Then it follows that:
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Giving for the integral:
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The laplace integral has been transformed into an integral over the product of
f(t) with a normal density distribution. The latter has an expectation value
p =T — s.0% And a spread 0. The next step is to develop f(¢) in a Taylor
series around the mean p of the normal distribution. Only the first three terms
are assumed significant, because we will let ¢ — 0 later on.
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Substitute this into the latter integral, then:
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The integrals are recognized as moments of the normal density distribution
(which are assumed to be well known). Therefore the right hand side becomes:
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Substitute this in the expression that we found for the Laplace integral:
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We are almost there. Remember that y = T — s.02 . The only thing we have
to do now is take the limit for o — 0 . This reduces p to T and therefore f(u)
to f(T). It is concluded that:

/ﬂo f).0(t—T).e >t dt = {f(T) + %f”(T) ,02] e s T+3(s.0)*

—0oQ

/%o f@).6(t—T).e *tdt = f(T).e*T

—0oQ

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.



