
Fuzzy Geometries

The VaagZien demonstration program was developed, because I have been fas-
cinated quite some time by the notion of Fuzzy Optics. The subject already fills
a chapter in my 1995 (Dutch) book:

http://huizen.dto.tudelft.nl/deBruijn/chap6/fuzzy.htm

Further thinking has given rise to a couple of new delightful insights, which
should not be missing in my Sections on Pure Applicable Mathematics (SPAM
;-) . This report covers some of the theory that is required before any program-
ming language can be set to work.

Two-dimensional moments

Consider an arbitrary 2-D distribution of N points (xk, yk) in the plane, also
called a collection of points, or points cloud. A quantity called weight or mass
mk is associated with each of these points. The total weight or mass M of the
points is given by the sum of the weights:

M =
N∑
k=1

mk =
∑
k

mk

It will be assumed in the sequel that the weights are always positive, meaning
that they can be normed. Such normed weights wk are defined by:

wk =
mk

M
=⇒ 0 ≤ wk ≤ 1 and

∑
k

wk = 1

We can define a spot, called the midpoint, center of mass, or whatever name is
to be preferred, as follows:

µx = x =
∑
k

wkxk and µy = y =
∑
k

wkyk

In addition to the above discrete quantities, there also exist continuum versions
of them. The only difference being that the latter are defined by (definite)
integrals instead of sums:∫∫

w(x, y) dx dy = 1 =⇒

µx = x =
∫∫

w(x, y)x dx dy and µy = y =
∫∫

w(x, y)y dx dy

It is clear from the outset, however, that such integrals are just limiting cases of
discrete sums. Hence subsequent results for the discrete case will also be valid
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for the continuous case.
The midpoint takes a special position inside (: not necessarily) the points cloud,
as it is the weighted mean value of all positions of the points in the cloud. The
midpoint is also called a first order moment of the points cloud. It’s easy to
conceive the weighted mean value of other quantities, however. Most useful are
the so-called second order moments, also known as the moments of inertia, due
to their application in Classical Mechanics. First, mean values of x2 , y2 and
x.y are defined as follows:

x2 =
∑
k

wkx
2
k or x2 =

∫∫
w(x, y)x2 dx dy

y2 =
∑
k

wky
2
k or y2 =

∫∫
w(x, y)y2 dx dy

x.y =
∑
k

wkxk.yk or x.y =
∫∫

w(x, y)x.y dx dy

The second order momenta are defined with respect to an origin (p, q):

σxx(p) =
∑
k

wk(xk − p)2 and σyy(q) =
∑
k

wk(yk − q)2

σxy(p, q) =
∑
k

wk(xk − p).(yk − q)

The continuous counterparts are:

σxx(p) =
∫∫

w(x, y)(x− p)2 dx dy and σyy(q) =
∫∫

w(x, y)(y − q)2 dx dy

σxy(p, q) =
∫∫

w(x, y)(x− p).(y − q)2 dx dy

For the moment being, attention will be restricted to the second order moment
for the x-direction only: σxx . And it will be shown that, for this quantity,
there exists a preferrable origin, which turns out to be the midpoint of the
points distribution. Here goes:

σxx(p) =
∑
k

wk(xk − p)2 =
∑
k

wkx
2
k − 2p

∑
k

wkxk + p2 =

x2 − 2px+ p2 =
[
x2 − x2

]
+
[
x2 − 2px+ p2

]
The first term between square brackets [ ] can be worked out as follows:∑

k

wkx
2
k −

(∑
k

wkxk

)2
 =
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∑
k

wkx
2
k − 2

∑
k

wk

(∑
k

wkxk

)
xk +

∑
k

wk

(∑
k

wkxk

)2

=

∑
k

wk

x2
k − 2

(∑
k

wkxk

)
xk +

(∑
k

wkxk

)2
 =

∑
k

wk

[
xk −

(∑
k

wkxk

)]2

=
∑
k

wk (xk − x)2

And the second term between square brackets [ ] can be worked out as follows:[
x2 − 2px+ p2

]
= (x− p)2

Conclusion: ∑
k

wk(xk − p)2 =
∑
k

wk (xk − x)2 + (x− p)2

Then we see that the first term is positive, because it is a sum of squares.
But also the second term is a square and hence positive. The latter assumes a
minimum if it is exactly zero, that is: p = x. Formally:∑

k

wk(xk − p)2 = minimum(p) ⇐⇒ p = x =
∑
k

wkxk

The physical interpretation of the above is that a moment of inertia assumes
a minimal value with respect to the origin if that origin is coincident with
the center of mass. A moment of intertia with respect to an origin which is
different from the center of mass can be expressed as the sum of two moments:
one which expresses the moment of intertia with respect to the midpoint plus
one which expresses the moment of interia of the midpoint with respect to the
origin. Unless explicitly stated otherwise, it will be assumed in the sequel that
all moments of intertia are defined with respect to the midpoint µx. Then we
can drop the dependence on (p) in:

σxx =
∑
k

mk(xk − µx)2

Very much the same reasoning can be accomplished for the second order moment
in the y-direction:∑

k

wk(yk − q)2 = minimum(q) ⇐⇒ q = y =
∑
k

wkyk

How about the ”mixed” second order moment σxy?

σxy(x, y) =
∑
k

wk(xk − x)(yk − y) =
∑
k

wkxkyk −
∑
k

xky −
∑
k

ykx+ x y =
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∑
k

xkyk − x y − y x+ x y =⇒ σxy = xy − x y

Since it will be assumed in the sequel that all moments of inertia are with respect
to the midpoint (µx, µy), we can drop (p, q) in:

σxx =
∑
k

wk(xk − µx)2 and σyy =
∑
k

wk(yk − µy)2

σxy =
∑
k

wk(xk − µx)(yk − µy)

So far, it is less clear what kind of physical meaning should be attached to
the quantity σxy, which is sometimes known as a ”cross correlation”. Suppose
however, that we don’t like it at all and that we only want to get rid of this
term. How then could we accomplish such a thing ? It can certainly not be done
by translation, since the origin of our coordinate system has become fixed at
the midpoint. But there is another possibility. It could be done by rotating the
coordinate system in such a way that σ′xy becomes zero in the new (’primed’)
coordinate system. Let’s give it a try. Start with:{

x′ = cos(θ)x+ sin(θ)y
y′ = −sin(θ)x+ cos(θ)y

Then:
σ′xy = 0 ⇐⇒

∑
k

wkx
′
ky
′
k =

∑
k

wk [cos(θ)xk + sin(θ)yk] [−sin(θ)xk + cos(θ)yk] =

−cos(θ)sin(θ)
∑
k

wkx
2
k + sin(θ)cos(θ)

∑
k

wky
2
k

+
[
cos2(θ)− sin2(θ)

]∑
k

wkxkyk =

−1
2
sin(2θ)(σxx − σyy) + cos(2θ)σxy = 0

Resulting in:

tan(2θ) =
2σxy

σxx − σyy
for σxx 6= σyy

The other two moments of intertia, σ′xx and σ′yy, are then expressed into the
angle θ as follows:

σ′xx =
∑
k

wk(x′k)2 =
∑
k

wk [cos(θ)xk + sin(θ)yk]2
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= cos2(θ)
∑
k

wkx
2
k + sin2(θ)

∑
k

wky
2
k + 2sin(θ)cos(θ)

∑
k

wkxkyk

=⇒ σ′xx = cos2(θ)σxx + sin2(θ)σyy + 2sin(θ)cos(θ)σxy

And:
σ′yy =

∑
k

wk(y′k)2 =
∑
k

wk [−sin(θ)xk + cos(θ)yk]2

= sin2(θ)
∑
k

wkx
2
k + cos2(θ)

∑
k

wky
2
k − 2sin(θ)cos(θ)

∑
k

wkxkyk

=⇒ σ′yy = sin2(θ)σxx + cos2(θ)σyy − 2sin(θ)cos(θ)σxy

Working out the latter formula somewhat further:

σ′yy =
[
1− cos2(θ)

]
σxx +

[
1− sin2(θ)

]
σyy − 2sin(θ)cos(θ)σxy

= σxx + σyy − σ′xx
It is thus seen that the sum of the two ”main” moments of intertia is quite
invariant for an orthogonal coordinate transformation:

σ′xx + σ′yy = σxx + σyy

We conclude that, indeed, the ”unwanted” σxy can be eliminated by a suitable
rotation of the coordinate system, while the sum of the other ”main” second
order monents ( σxx + σyy ) remains invariant.

Tensor of Inertia

In two dimensional space, the first order moments can be conceived as the two
components of a vector:

~µ =
[ ∑

k wkxk∑
k wkyk

]
Likewise, the second order moments can be conceived as the three components
of a symmetric matrix, the so-called inertial tensor:

↔
σ=

[
σxx σxy
σxy σyy

]
At a more sophisticated level, the problem of finding the main axes of inertia
can then be approached via Linear Algebra, especially the theory of eigenvalues
and eigenvectors. It’s a matter of routine to show that the expressions found
for the transformed moments of inertia are equivalent with the following: find
the orthogonal transformation (i.e. rotation over an angle θ) which reduces the
tensor of inertia to its diagonal form:[

cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
σxx σxy
σxy σyy

] [
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
=
[
σ′xx 0
0 σ′yy

]
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This, in turn, is equivalent with finding the eigenvalues λ and the eigenvectors
(κx, κy) of the inertial tensor:[

σxx σxy
σxy σyy

] [
κx
κy

]
= λ

[
κx
κy

]
The corresponding characteristic equations are:∣∣∣∣ σxx − λ σxy

σxy σyy − λ

∣∣∣∣ = 0 ⇐⇒

(σxx − λ)(σyy − λ)− σ2
xy = 0 ⇐⇒ λ2 − (σxx + σyy)λ+ σxxσyy − σ2

xy = 0

Define trace Sp and determinant Det by:

Sp := σxx + σyy and Det := σxxσyy − σ2
xy

Then the characteristic equation can be written as:

λ2 − (Sp)λ+Det = 0

Most of the time, a quadratic equation has two solutions. The greatest of the
two solutions will be called λ1 and the smallest one λ2. Sum and product of the
solutions are found immediately:

λ1 + λ2 = Sp and λ1.λ2 = Det

Write the equation as:

λ2 − 2(Sp/2)λ+ (Sp/2)2 = (Sp/2)2 −Det ⇐⇒

[λ− (Sp/2)]2 = (Sp/2)2 −Det ⇐⇒ λ− (Sp/2) = ±
√

(Sp/2)2 −Det

⇐⇒ λ = (Sp/2)±
√

(Sp/2)2 −Det

Herewith we find the solutions:

λ1 = (Sp/2) +
√

(Sp/2)2 −Det

λ2 = (Sp/2)−
√

(Sp/2)2 −Det = Det/λ1

Provided that de discriminant is positive, indeed:

(Sp/2)2 −Det =
1
4

(σxx + σyy)2 − (σxxσyy − σ2
xy) =

1
4
σ2
xx +

1
4
σ2
yy +

1
2
σxxσyy − σxxσyy + σ2

xy =
1
4
σ2
xx +

1
4
σ2
yy −

1
2
σxxσyy + σ2

xy =

=
1
4

(σxx − σyy)2 + σ2
xy > 0
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Herewith the eigenvalues can also be expressed as:

λ12 =
1
2

(σxx + σyy)± 1
2

(σxx − σyy)

√
1 +

(
2σxy

σxx − σyy

)2

Where the expression between parentheses ( ) is recognized as:

2σxy
σxx − σyy

= tan(2θ)

The accompanying eigenvectors can now be calculated too:[
σxx σxy
σxy σyy

] [
κx
κy

]
= λ

[
κx
κy

]
⇐⇒

{
(σxx − λ)κx + σxyκy = 0
σxyκx + (σyy − λ)κy = 0

Possible solutions, corresponding with λ1 and λ2, are given by:[
κx
κy

]
=
[

σxy
λ12 − σxx

]
or

[
κx
κy

]
=
[
λ12 − σyy

σxy

]
For σxx = σyy, the eigenvalue problem reduces to:

(σxx − λ)2 − σ2
xy = 0 ⇐⇒ λ = σxx ± σxy

The accompanying eigenvectors are found with:

[σxx − (σxx ± σxy)]κx + σxyκy = 0 =⇒[
κx
κy

]
=
[

1
1

]
/
√

2 and
[
κx
κy

]
=
[

1
−1

]
/
√

2

Since it will never happen that the length of the eigenvector belonging to one of
the eigenvalues incidentally becomes zero, it is always possible to divide them
by their own length. In other words: the eigenvectors may be normed.
It may be wondered in what circumstances the two eigenvalues of the inertial
tensor become equal. This can only happen when the discriminant becomes
zero:

(Sp/2)2 −Det =
1
4

(σxx − σyy)2 + σ2
xy = 0 ⇐⇒

σxx = σyy and σxy = 0

Therefore, in this special case, the two main moments of inertia must be equal
and their cross correllation must be zero. This will happen, for example, when
the points cloud homogeneously fills the area of a circle.
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Skewed 2-D Gaussian

It is known that the Gauss function g(x) is accompanied by the following func-
tion G(κ) as its Fourier Transform:

g(x) =
1

σ
√

2π
e−

1
2x

2/σ2
⇐⇒ G(κ) =

∫ +∞

−∞
g(x) dx = e−

1
2σ

2κ2

It is seen that the standard deviation of G(κ) in the Fourier domain is precisely
the inverse 1/σ of the standard deviation g(x) in the space domain. In the
general two-dimensional case, σ2 will be replaced by the tensor:[

σxx σxy
σxy σyy

]
The accompanying quadratic form is:[

κx κy
] [ σxx σxy

σxy σyy

] [
κx
κy

]
= σxxκ

2
x + 2σxyκxκy + σyyκ

2
y

The Fourier Transform of a 2-D Gauss function can be generalized accordingly:

G(κx, κy) = e−
1
2 (σxxκ

2
x+2σxyκxκy+σyyκ

2
y)

The exponent of the Gauss function in the Fourier domain can be brought into
a more simple form by an orthogonal transformation to eigenvector coordinates.
To this end, the following eigenvalue problem has been solved:[

σxx σxy
σxy σyy

] [
κx
κy

]
= λ

[
κx
κy

]
Define trace Sp and determinant Det by:

Sp := σxx + σyy and Det := σxxσyy − σ2
xy

Herewith we have found the solutions:

λ1 = (Sp/2) +
√

(Sp/2)2 −Det

λ2 = (Sp/2)−
√

(Sp/2)2 −Det = Det/λ1

After orthogonal transformation to a system of eigenvector coordinates, the
simplified quadratic form will read as follows:

λ1κ
2
x + λ2κ

2
y

Returning to the original problem, we find that the inverse 1/σ2 will correspond
to the inverse of the inertia tensor:[

σxx σxy
σxy σyy

]−1

=
[

σyy −σxy
−σxy σxx

]
/(σxxσyy − σ2

xy)
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The accompanying quadratic form is:

[
x y

] [ σyy −σxy
−σxy σxx

]
/(σxxσyy − σ2

xy)
[
x
y

]
=
σyyx

2 − 2σxyxy + σxxy
2

σxxσyy − σ2
xy

This in turn corresponds to the generalization of the Gauss Function in 2-D:

g(x, y) = e−
1
2 (σyyx

2−2σxyxy+σxxy
2)/(σxxσyy−σ2

xy)

A simplified quadratic form for the inverse problem can be found easily, because
the eigenvalues of an inverse matrix are always the inverses of the eigenvalues
of the original matrix. Hence they are found immediately to be:

1/λ1 and 1/λ2

This in turn means that the Gauss function, when transformed to eigenvector
coordinates, is simply given by:

g(x, y) = e−
1
2 (x2/λ1+y2/λ2)

What’s still to be found is a norming factor for the skewed 2-D Gaussian func-
tion. To this end, integrate the function g(x, y) over the whole plane:∫∫

g(x, y) dx dy =
∫∫

e−
1
2 (x2/λ1+y2/λ2) dx dy

Substitute u = x/
√
λ1 and v = y/

√
λ2 :

=
∫∫

e−
1
2 (u2+v2) d(u

√
λ1) d(v

√
λ2) =

√
λ1λ2

∫∫
e−

1
2 (u2+v2) du dv =

Transform to polar coordinates:

=
√
λ1λ2

∫∫
e−

1
2 r

2
rdrdφ = −

√
λ1λ2

∫∫
e−

1
2 r

2
d(−1

2
r2)dφ =

= −
√
λ1λ2 2π

[
e−

1
2 r

2
]∞

0
=
√
λ1λ2 2π = 2π

√
Det

Thus the norming factor for the 2-D skewed Gaussian function is, when inte-
grated over the whole plane from ±∞ to ±∞:

2π
√
σxxσyy − σ2

xy

Giving as the end-result:

g(x, y) =
e−

1
2 (σyyx

2−2σxyxy+σxxy
2)/(σxxσyy−σ2

xy)

2π
√
σxxσyy − σ2

xy
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Because Gauss functions are expensive to compute, it is desirable to have an
estimate of the cut-off value, beyond which the values of Gauss function can be
safely set to zero. Such is the case if, beyond certain values for (x, y):

e−
1
2 (σyyx

2−2σxyxy+σxxy
2)/(σxxσyy−σ2

xy) < ε ⇐⇒

−1
2

(σyyx2 − 2σxyxy + σxxy
2)/(σxxσyy − σ2

xy) < ln(ε) ⇐⇒

(σyyx2 − 2σxyxy + σxxy
2)/(σxxσyy − σ2

xy) > 2 ln(1/ε)

The outcome is far more transparent in eigenvector coordinates, where:

x2/λ1 + y2/λ2 > 2 ln(1/ε)

Substitute:
a2 := λ1.2 ln(1/ε)

b2 := λ2.2 ln(1/ε)

Then the above condition for the uninteresting area can be written as:(x
a

)2

+
(y
b

)2

> 1

This means that the area of interesting values for the Gauss function is bounded
by an ellipse with (half) axes:

a :=
√
λ1.2 ln(1/ε)

b :=
√
λ2.2 ln(1/ε)

Hence it is possible to define a (Pascal) function for the part of the plane where
values of the skewed 2-D Gauss function are worthwile to be calculated:

function interesting(x,y : double) : boolean;
begin
sigma_yy*sqr(x) - 2*sigma_xy*x*y + sigma_xx*sqr(y) <
( sigma_xx*sigma_yy - sqr(sigma_xy) ) * 2*ln(1/epsilon)

end;

Most of the time, it may be necessary to have an estimate of the area which is
covered by the abovementioned ellipse, for the reason that the number of points
(i.e.pixels) inside the area of interest is proportional to such an area. One could,
for example, carry out a Flood Fill on ”black” pixels inside such an area. It is
known that the area of an ellipse with axes a and b is given by:

π a.b = π
√
λ1.2 ln(1/ε)

√
λ2.2 ln(1/ε) = π

√
λ1λ2 2 ln(1/ε) =

= ln(1/ε) 2π
√
σxxσyy − σ2

xy

Being exactly equal to the norming factor, times the logarithm of one divided
by the desired accuracy. With normed functions, this leads to the incredibly
simple answer that the area is equal to ln(1/ε).
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Fuzzy Line Segment

The parameter representation of a line segment may be given by:

x(t) = sx + vx.t and y(t) = sy + vy.t where: 0 < t < T

Then the fuzzy line segment will be defined as follows:

F (x, y) =
v

σ
√

2π

∫ t2

t1

e−
1
2 [x−(sx+vx.t)]

2/σ2− 1
2 [y−(sy+vy.t)]

2/σ2
dt

Here the factor v is added to the norm 1/σ
√

2π for the sake of making the
function F dimensionless: σ has the same dimension (length) as v.dt, if t is
interpreted as time. The terms in the exponent are worked out:

[(sx + vx.t)− x]2 + [(sy + vy.t)− y]2 =

v2
x. [t− (x− sx)/vx]2 + v2

y [(t− (y − sy)/vy]2

Before proceeding, another sequence of formulas is presented:

w1(x−A)2 +w2(x−B)2 = w1x
2 − 2w1Ax+w1A

2 +w2x
2 − 2w2Bx+w2B

2 =

(w1 + w2)

[
x2 − 2

w1A+ w2B

w1 + w2
x+

(
w1A+ w2B

w1 + w2

)2
]

− (w1A+ w2B)2

w1 + w2
+

(w1A
2 + w2B

2)(w1 + w2)
w1 + w2

=

(w1 + w2)
[
x− w1A+ w2B

w1 + w2

]2

−w
2
1A

2 + 2w1w2AB + w2
2B

2

w1 + w2
+
w2

1A
2 + w1w2A

2 + w2
2B

2 + w1w2B
2

w1 + w2
=

(w1 + w2)
[
x− w1A+ w2B

w1 + w2

]2

+
w1w2

w1 + w2
(A2 − 2AB +B2)

The result is a Lemma:

w1(x−A)2 +w2(x−B)2 = (w1 +w2)
[
x− w1A+ w2B

w1 + w2

]2

+
w1w2

w1 + w2
(A−B)2

Employ the Lemma, with w1 = v2
x , w2 = v2

y , A = (x−sx)/vx , B = (y−sy)/vy
:

v2
x. [t− (x− sx)/vx]2 + v2

y [(t− (y − sy)/vy]2 =

(v2
x + v2

y)

[
t−

v2
x.(x− sx)/vx + v2

y.(y − sy)/vy
v2
x + v2

y

]2

+
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v2
x.v

2
y

v2
x + v2

y

[(x− sx)/vx − (y − sy)/vy]2 =

(v2
x + v2

y)
[
t− vx.(x− sx) + vy.(y − sy)

v2
x + v2

y

]2

+
[vy.(x− sx)− vx.(y − sy)]2

v2
x + v2

y

First introduce a couple of abbreviations:

v2 = v2
x + v2

y and µ =
vx.(x− sx) + vy.(y − sy)

v2
x + v2

y

Then the exponent becomes:

v2(t− µ)2 +
[
−vy.(x− sx) + vx.(y − sy)

v

]2

The quotient vx/v may be set to the cosine and the quotient vy/v may be set
to the sine of a certain angle φ, giving for the second term:

[−sin(φ).(x− sx) + cos(φ).(y − sy)]2

This is recognized as the square of the function that defines a straight line,
having a direction (cos(φ), sin(φ)):

−sin(φ).(x− sx) + cos(φ).(y − sy) = 0

The introduction of an angle φ also affects the expression for µ:√
v2
x + v2

y µ =
vx.(x− sx) + vy.(y − sy)√

v2
x + v2

y

=⇒ v.µ = cos(φ).(x− sx) + sin(φ).(y − sy)

=⇒ v2(t− µ)2 = [v.t− {cos(φ).(x− sx) + sin(φ).(y − sy)}]2

This is recognized again as the square of the function that defines a straight line
which is perpendicular to the previous one, having a normal (cos(φ), sin(φ)):

cos(φ).(x− sx) + sin(φ).(y − sy) = 0

Now substitute the result into the integral:

F (x, y) =
v

σ
√

2π

∫ t2

t1

e−
1
2v

2(t−µ)2/σ2+[−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2
dt =

e−
1
2 [−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2 v

σ
√

2π

∫ t2

t1

e−
1
2v

2(t−µ)2/σ2
dt
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Thus, the exponential function splits up into a part which is quite independent
on the running parameter t and another part which is still dependent on it.
Only the latter has to be integrated further, of course. Due to our findings
with respect to v.µ, it is advantageous to introduce the length s as the running
parameter, instead of the (time) t, by: s = v.t . Herewith the factor v in the
norm will cancel against the factor v in ds = dt/v. Giving for the remaining
integral:

I(x, y) =
1

σ
√

2π

∫ s2

s1

e−
1
2 [(s−{cos(φ).(x−sx)+sin(φ).(y−sy)})/σ]2 ds

The integral over a Gaussian can be expressed as the sum of two error functions,
where the ERror Function (erf) is defined as:

erf(x) =
1√
2π

∫ x

−∞
e−

1
2u

2
du

Now define as the new integration parameter:

u(s) =
s− [cos(φ).(x− sx) + sin(φ).(y − sy)]

σ

Then du = ds/σ and with u1 = u(s1) , u2 = u(s2) , we find :

I(x, y) = erf(u2)− erf(u1) where u1 = u1(x, y) and u2 = u2(x, y)

Giving as the end-result:

F (x, y) = [erf(u2(x, y))− erf(u1(x, y))] e−
1
2 [−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2

For (s1, s2) = (−∞,+∞) , hence (u1, u2) = (−∞,+∞) , it is known that
erf(u1) = 0 and erf(u2) = 1 . Hence:

F (x, y) = e−
1
2 [−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2

Herewith we find the fuzzyfication of a straight line, with infinite length.

Conformal Mappings

In the complex plane, any straight line can be represented by the following
equation:

z = s+ t.eiφ

Because, when splitted into real and imaginary parts according to z = x + i.y
and a = sx + i.sy, this single equation is equivalent with the set:

x = sx + t.sin(φ)
y = sy + t.cos(φ)

13



Here t is the running parameter, which up to now is allowed to assume only real
values. If the realm of the straight line is extended to the whole plane, then
complex values for t should be allowed too. To indicate this, let’s replace t by
ζ and write:

z = s+ ζ.eiφ

Where ζ = ξ + i.η. Solve ζ from this equation:

ζ = (z − a).e−iφ = (x+ i.y − sx − i.sy).(cos(φ) + i.sin(φ))

Resulting in:

ξ = Re(ζ) = +cos(φ).(x− sx) + sin(φ).(y − sy)
η = Im(ζ) = −sin(φ).(x− sx) + cos(φ).(y − sy)

The fuzzyfication of a straight line with tangent vector (cos(φ), sin(φ)) and
infinite length is repeated:

F (x, y) = e−
1
2 [−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2

It is seen that, coincidence or not, this expression is equal to:

F (x, y) = e−
1
2 [Im(ζ)/σ]2

Let’s see if this result is useful for other things than straight lines. A concise
equation for a circle in the complex plane is:

z = s+R.ei.θ

Where θ is the running parameter. To indicate that the equation will be declared
valid for the whole complex plane, it is written as:

z = s+R.ei.ζ

Here we substitute z = s+ r.eiφ, where r =
√

(x− sx)2 + (y − sy)2. Solving for
ζ now gives:

i.ζ = ln((z − s)/R) = ln(r/R) + i.φ =⇒

ζ = −i.ln(r/R) + φ =⇒ |Im(ζ)| = −ln(r/R)

An educated guess for the end-result is guided by the heuristical argument that
the denominator with σ in it should be as dimensionless as the logarithm in the
nominator:

F (x, y) = e−
1
2 [Im(ζ)/σ]2 = e−

1
2 [ln(r/R)/(σ/R)]2

Unsatisfied as we are with such reasoning, we will search for a relationship
connecting this preliminary result to a theory wich is far better established:
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the one for fuzzy straight lines. First we will make an approximation of the
logarithm for large values of R:

ln(r/R) = ln(1 + r/R− 1) ≈ r/R− 1 =

√(
x− sx
R

)2

+
(
y − sy
R

)2

− 1

As a next step, it is recognized that the circle is approximated by its tangent
line in a small area around the tangent point:

C − C0 ≈
∂C

∂x
(x− x0) +

∂C

∂y
(y − y0)

Where:

C(x, y) =
(
x− sx
R

)2

+
(
y − sy
R

)2

And:

C0 = C(x0, y0) =
(
x0 − sx
R

)2

+
(
y0 − sy
R

)2

= 1

Giving for the approximation as a whole:

C(x, y) ≈ 1 + 2(x0 − sx)(x− x0)/R2 + 2(y0 − sy)(y − y0)/R2

Consequently:
ln(r/R) ≈

√
C(x, y)− 1 =√

1 + 2(x0 − sx)(x− x0)/R2 + 2(y0 − sy)(y − y0)/R2 − 1

The square root, in turn, can be approximated as follows:

√
1 + x ≈ 1 +

1
2
x =⇒√

1 + 2(x0 − sx)(x− x0)/R2 + 2(y0 − sy)(y − y0)/R2 − 1

≈ 1 + (x0 − sx)(x− x0)/R2 + (y0 − sy)(y − y0)/R2 − 1 =

cos(φ)(x− x0)/R+ sin(φ)(y − y0)/R

If we put φ equal to the direction of the radius R. Now we are almost there:

F (x, y) = e−
1
2 [ln(r/R)/(σ/R)]2 ≈

e−
1
2 [{cos(φ)(x−x0)/R+sin(φ)(y−y0)/R}/(σ/R)]2

= e−
1
2 [cos(φ).(x−sx)+sin(φ).(y−sy)]2/σ2

15



Almost, because there seems to be a discrepancy between this formula and the
one for the fuzzy straight line:

e−
1
2 [−sin(φ).(x−sx)+cos(φ).(y−sy)]2/σ2

This seemingly paradoxal result is readily resolved by recognizing that the nor-
mal vector of the tangent line has been employed with the limiting case of our
circle fuzzyfication, while the direction of the straight line itself was used in the
earlier result. Thus we only have to replace the normal cos(φ), sin(φ) by the
direction −sin(φ), cos(φ) and the fuzzyfication of the infinite straight line will
be found back, indeed. This also means that the heuristics, which gave rise to
the factor (σ/R) , is justified, in the end:

F (x, y) = e−
1
2 [ln(r/R)/(σ/R)]2 where: r =

√
(x− sx)2 + (y − sy)2

Because Gauss functions are expensive to compute, it is desirable to have an
estimate of the cut-off value, beyond which the values of Gauss function can be
safely set to zero. Such is the case if, beyond certain values for r:

e−
1
2 [ln(r/R)/(σ/R)]2 < ε =⇒ [ln(r/R)/(σ/R)]2 > 2 ln(1/ε) =⇒

|ln(r/R)| > σ

R

√
2 ln(1/ε)

Consequently, the interesting values of r are restricted to the interval:

R.e−
√

2 ln(1/ε) σ/R ≤ r ≤ R.e+
√

2 ln(1/ε) σ/R

With the standard accuracy ε = e−
1
2 (2π)2

, which I have introduced elswhere, the
formula becomes:

R.e−2πσ/R ≤ r ≤ R.e+2πσ/R
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