
Densities and Senses

Consider a collection X of points xk in one-dimensional space:

X = {x1, x2, x3, ..., xk, ..., xN−1, xN}

Suppose the number of points in this 1-D points cloud is N . As a rule, the
points xk are unevenly spaced. They may form a regularly ordered discrete set,
an randomly distributed set or a continuous set, the latter being the case when
points can no longer be distinguished from each other.

Exact Densities

Let us start with Regular Discrete sets. It may be questioned with such sets what
a Density is supposed to mean. Without doubt, by far the simplest example of
such a Density P (x) is the constant density. There will hardly be any argument
about a definition like this:

P (x) = constant ⇐⇒ xk =
k

N

Next consider a case in which Density is increasing in a linear fashion. What
does it mean: linear ? Well, suppose there is one point xk between 0 and 1,
then there are two points xk between 1 and 2, three points xk between 2 and 3,
and so on. Suppose the initial sampling is ∆, then, if we arrive at x = k.∆, the
number of points has increased to 1 + 2 + 3 + ... + k = k(k + 1)/2. Therefore
our basic equation is:

xk(k+1)/2 = L.∆

In this way, the array x is only defined for certain values of its index, namely:
1, 3, 6, .... In order to generalize for all values of the index, L must be solved
from:

k(k + 1)/2 = L =⇒ k2 + k − 2L = 0 =⇒ k =
√

8L+ 1− 1
2

A linear increasing density function is thus generated by:

xL =
√

8L+ 1− 1
2

∆

The first few values (for ∆ = 1):

x0 = 0 , x1 = 1 , x2 = 1.56155 , x3 = 2 , x4 = 2.37228 , x5 = 2.70156 , x6 = 3 , ...

Other Exact Densities can be constructed by assuming that the integral over
the accumulated density P up to xk is equal to the number of points involved,
divided by N . More precise, while taking care of scaling factors:∫ xk

−∞
P (t) dt =

k

N

∫ +∞

−∞
P (t) dt

1



Repeat for the Constant Density, which is given by P (x) = C. Let the area of
interest be restricted to [0, 1]. Resulting in:∫ xk

0

C dt = C.xk =
k

N
.C =⇒ xk =

k

N

Another example has been the Linear Density, which is given by P (x) = x.
Again, let the area of interest be restricted to [0, 1]. Giving:∫ xk

0

t dt =
1
2
x2
k =

k

N
.
1
2

=⇒ xk =

√
k

N

But wait, this outcome seems to be different from the one we have obtained in
an earlier stage:

Compare xk =
√

8k + 1− 1
2

∆ with xk =

√
k

N

Assume that xN = 1, then it follows that ∆ = 2/(
√

8N + 1 − 1) and, indeed,
for large values of k:

xk =
√

8k + 1− 1√
8N + 1− 1

≈
√
k

N

A third example is the Density which is given by:

P (x) =
d/π

d2 + x2

The area of interest is [−∞,+∞]. Resulting in:∫ xk

−∞

d/π

d2 + t2
dt =

1
π

∫ xk

−∞

d(t/d)
1 + (t/d)2

=
1
π
arctan(xk/d) +

1
2

=
k

N
.1 =⇒

arctan(xk/d) =
k

N
π − 1

2
π =⇒ xk = d tan

(
k

N
π − 1

2
π

)
Where the possible values of k need to be be restricted: 0 < k < N .
It’s also possible to formulate the reverse problem: how to find the Density
Function P (x) if the point cloud {xk} has been given. An illustrative example
is the distribution of the stops on a guitar’s neck. It can be shown that it is
given by:

xk = L

[
1−

(
1
2

)k/12
]

Where L is the length of the strings. The case x0 for k = 0 corresponds with
the full length of a string and k = 1/2 corresponds with a point halfway on a
string (sounds an octave higher). Rewrite the above formula, as follows:

xk
L

= 1−
(

1
2

)k/12

=⇒ 1− xk
L

=
(

1
2

)k/12

=⇒
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ln
(

1− xk
L

)
=

k

12
ln(

1
2

)

The problem is squeezed now into standard form. We see that the total number
of points equals 12, which is the number of notes in an octave. And:∫ xk

0

P (t) dt = ln
(

1− xk
L

)
=⇒

∫ x

0

P (t) dt = ln
∣∣∣1− x

L

∣∣∣ =⇒

P (x) =
1/L

1− x/L
=

1
L− x

By differentiation at both sides (and eventually ignoring a minus sign). The
Density Function P (x) starts at (0, 1) and it has a vertical asymptote for x = L
(: the highest notes cannot be reached).

Density Distributions

Consider again the collection X of points xk in one-dimensional space:

X = {x1, x2, x3, ..., xk, ..., xN−1, xN}

A continuous function P (x) may be associated with any such a collection of
points by allowing each weight mk of a point xk to be a continuous and differ-
entiable function of x. We will be even more specific, though, and define:

mk(x) =
1

σ
√

2π
e−

1
2 (x−xk)2/σ2

Meaning that each point (quickly) gains less weight at a greater distance from
its center. For N points xk, all weights are summed:

P (x) =
1
N

∑
k

mk(x) =
1
N

∑
k

1
σ
√

2π
e−

1
2 (x−xk)2/σ2

=
1

σN
√

2π

N∑
k=1

e−(x−xk)2/2σ2

The function P (x) will be called a Density Distribution associated with the
points xk.
A great advantage of defining a continuous (and even differentiable) function
over a discrete set is that the whole apparatus of classical analysis will be at
our disposal in this way.
To begin with, density distributions can be integrated:∫ +∞

−∞
P (x)dx =

1
σN
√

2π

∫ +∞

−∞

N∑
k=1

e−(x−xk)2/2σ2
dx =

1
N

N∑
k=1

1
σ
√

2π

∫ +∞

−∞
e−(x−xk)2/2σ2

dx =
1
N

N∑
k=1

1 = 1
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Hence the integral over any Density Distribution happens to be exactly equal
to unity: ∫ +∞

−∞
P (x)dx = 1

Is this a coincidence? No, of course. We simply have defined our norming factor
1/(σN

√
2π) in such a way, that such behaviour of Density Distributions is to

be expected.
We will demonstrate now that the Density Distributions, thus defined here, are
a sensible approximation to the exact Density Functions, as defined in a previous
paragraph. The definition there is repeated:∫ xk

−∞
P (t) dt =

k

N

∫ +∞

−∞
P (t) dt

Assuming that the Density Function P is properly normed, the expression may
be simplified to: ∫ xk

−∞
P (t) dt =

k

N

Where: ∫ +∞

−∞
P (x)dx = 1

What we will do first is make a Continuation of this definition, herewith answer-
ing the question what will happen if the number N of points xk in the points
cloud approximates infinity: N → ∞. The fraction k/N then approximates a
continuous variable y, while it is still restricted to the same interval [0, 1]:∫ x

−∞
P (t) dt = y(x) where 0 ≤ y ≤ 1

If we are able to determine the inverse function µ, which is defined by µ(y(x)) =
x or y(µ(x)) = x, then x = µ(y) will be the continuation of the points cloud xk.
At the other hand, we have the definition of a Density Distribution. If the latter
is continuated, then the result is an integral instead of a sum:

P (x) =
1
N

∑
k

mk(x) =
N∑
k=1

mk(x)
1
N

=⇒

P (x) =
∫ 1

0

wy(x)dy (because 0 ≤ y ≤ 1 )

Here the discrete variable k (or k/N) has been replaced by the continuous
variable y, the corresponding discrete finitesimal 1/N has been replaced by the
continuous infinitesimal dy and the discrete variable mk has been replaced by
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the continuous variable w. Remember that x = µ(y) represents the continuation
of the points cloud xk. Then:

wy(x) =
1

σ
√

2π
e−

1
2 [x−µ(y)]2/σ2

The integral becomes:

P (x) =
∫ 1

0

wy(x) dy =
∫ 1

0

1
σ
√

2π
e−

1
2 [x−µ(y)]2/σ2

dy

=
∫ +∞

−∞

1
σ
√

2π
e−

1
2 [x−µ(y)]2/σ2

(
dy

dµ

)
dµ

Here the change of independent variable y → µ invokes a change of the inte-
gration interval from [0, 1] to [−∞,+∞]. Moreover, the fraction dy/dµ denotes
the derivative of the inverse function of µ(y), which is y(µ). And:

dy(µ)
dµ

=
d

dµ

∫ µ

−∞
P (t) dt = P (µ)

Then the integral becomes:

P (x) =
∫ 1

0

wy(x) dy =
∫ +∞

−∞

1
σ
√

2π
e−

1
2 [x−µ]2/σ2

P (µ) dµ

=
∫ +∞

−∞

1
σ
√

2π
e−

1
2µ

2/σ2
P (x− µ) dµ

We could stop here and simply state that any function P as it is convoluted to
P with a Gaussian function is an approximation to the original. That is, we
would have reduced the Discrete to the Continuous case.
But we won’t stop, since there is quite a concise proof for the Continuous case.
Develop the function P (x− µ) into a power series around x:

P (x− µ) = P (x)− µP ′(x) +
1
2
µ2P ′′(x) + ...

And substitute into the integral, then:

P (x) =
∫ +∞

−∞

1
σ
√

2π
e−

1
2µ

2/σ2
P (x− µ) dµ =

P (x)
∫ +∞

−∞

1
σ
√

2π
e−

1
2µ

2/σ2
dµ − P ′(x)

∫ +∞

−∞

1
σ
√

2π
µ e−

1
2µ

2/σ2
dµ

+
1
2
P ′′(x)

∫ +∞

−∞

1
σ
√

2π
µ2 e−

1
2µ

2/σ2
dµ − ... =⇒
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P (x) ≈ P (x) +
1
2
σ2.P ′′(x)

Where use has been made of known properties of Gaussian (normal) distribution
functions:∫ +∞

−∞

1
σ
√

2π
e−

1
2µ

2/σ2
dµ = 1

∫ +∞

−∞

1
σ
√

2π
µ e−

1
2µ

2/σ2
dµ = 0

∫ +∞

−∞

1
σ
√

2π
µ2 e−

1
2µ

2/σ2
dµ = σ2

Thus we see that, indeed, any exact Density Function is approximated by an
accompanying Density Distribution, with an accuracy which quickly increases as
the standard deviation σ of the Gaussian weight functions wy(x) is diminished
accordingly. A preliminary necessary condition for the transition from Discrete
to Continuous to take place is: dy < σ or σ > 1/N . (And, with help of
Shannon’s Sampling Theorem, this can be further refined to dy < 1

2σ , as has
been demonstrated elsewhere.)

Differentiation

We can differentiate the Density Function P (x) with respect to x:

P ′(x) =
N∑
k=1

−x− xk
σ2

e−(x−xk)2/2σ2
=

1
σ2

[∑
k

mk(x)xk − x
∑
k

mk(x)

]
The mean value of x has been defined as the following quotient:

x =
∑
kmkxk∑
kmk

=

[
N∑
k=1

xk e
−(x−xk)2/2σ2

]
/

[
N∑
k=1

e−(x−xk)2/2σ2

]
Then it is seen that:

P ′(x) =
1
σ2

N∑
k=1

e−(x−xk)2/2σ2
(x− x) =⇒

P ′(x) =
P (x)
σ2

(x− x) =
P (x)
σ2

(µx − x)

The density function may be differentiated twice:

P ′(x) =
N∑
k=1

−(x− xk)
σ2

e−(x−xk)2/2σ2
=⇒

P ′′(x) =
N∑
k=1

[(
x− xk
σ2

)2

e−(x−xk)2/2σ2
− 1
σ2
e−(x−xk)2/2σ2

]
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Rewrite as follows:

P ′′(x) =
1
σ4

N∑
k=1

(x2 − 2xxk + x2
k − σ2)e−(x−xk)2/2σ2

The mean value of x2 has been defined as the following quotient:

x2 =
∑
k

mkx
2
k/
∑
k

mk

[
N∑
k=1

x2
k e
−(x−xk)2/2σ2

]
/

[
N∑
k=1

e−(x−xk)2/2σ2

]
Then we find:

P ′′(x) =
P (x)
σ4

(x2 − 2xx+ x2 − σ2)

Rework towards a moment of inertia with respect to the midpoint µx:

P ′′(x) =
P (x)
σ4

[
x2 − x2 + (x− x)2 − σ2

]
=
P (x)
σ4

[
σxx + (x− µx)2 − σ2

]
It is seen that the second derivative is equal to the Density, times the total
moment of inertia minus the spread of the Gass function. The total moment of
inertia, in turn, consists of two terms: the moment of inertia of the points cloud
with respect to the midpoint plus the moment of inertia of the midpoint with
respect to the origin.

Fourier Series

Consider an important limiting case. Suppose there are infinitely many points
xk in the collection X and they are all evenly spaced: xk = k∆. Thus, apart
from a norming constant, we have the density function:

P (x) =
+∞∑

L=−∞
e−(x−L∆)2/2σ2

It is easily shown that the above density function is periodic. Its period is
equal to ∆: P (x + ∆) = P (x) for arbitrary x. This means that P (x) can be
developed into a Fourier series. In addition, the function is even, meaning that
P (x) = P (−x), which results in real-valued Fourier coefficients Ak. They are
calculated initially as complex-valued entities.

Ak + iBk =
1

∆/2

∫ +∆/2

−∆/2

P (x)ei k 2π/∆ xdx =

In the sequel, kind of an angular frequency ω will stand for the quantity ω =
2π/∆. Then let calculations continue:

1
∆/2

∫ +∆/2

−∆/2

+∞∑
L=−∞

e−(x−L∆)2/2σ2
eikωxdx =
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1
∆/2

+∞∑
L=−∞

∫ +∆/2

−∆/2

e−(x−L∆)2/2σ2
eikωxdx

Substitute y = x− L∆ and integrate to y:

Ak + iBk =
1

∆/2

+∞∑
L=−∞

∫ +∆/2−L∆

−∆/2−L∆

e−y
2/2σ2

eikω(y+L∆)dy =

Where:
eikω(y+L∆) = eikωyeikL2π = eikωy.1

Next replace y by −y and switch integration bounds:

Ak + iBk =
1

∆/2

+∞∑
L=−∞

∫ L∆+∆/2

L∆−∆/2

e−y
2/2σ2

eikω(−y)dy

The above integrals are precisely the adjacent pieces of another integral which
has bounds reaching to infinity. That is, they sum up to an infinite integral:

Ak + iBk =
1

∆/2

∫ +∞

−∞
e−y

2/2σ2
e−ikωydy =

1
∆/2

∫ +∞

−∞
e−y

2/2σ2−ikωy

The part in the exponential function can be written as follows:

−y2/2σ2 − ikωy = −1
2

(y2/σ2 − 2.ikωσy/σ) =

−1
2
{y2/σ2 − 2.ikωσy/σ + (ikωσ)2}+

1
2

(ikωσ)2 =

−(y/σ − ikωσ)2/2− (kωσ)2/2

Resulting in:
1

∆/2

∫ +∞

−∞
e−(y/σ−ikωσ)2/2e−(kωσ)2/2 dy =

e−(kωσ)2/2 1
∆/2

∫ +∞

−∞
e−(y−ikωσ2)2/2σ2

dy

We know that the integral is equal to σ
√

2π, giving at last:

Ak + iBk = Ak =
σ
√

2π
∆/2

e−(kωσ)2/2
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The Fourier series of any periodic function is given by:

P (x) =
1
2
A0 +

∞∑
k=1

Ak cos(kωx)

We conclude that the Fourier series of a uniform Density Function is given by:

P (x) =
+∞∑

L=−∞
e−(x−L∆)2/2σ2

= σ
√

2π

[
1
∆

+
1

∆/2

∞∑
k=1

e−(kωσ)2/2 cos(kωx)

]

Where we remind of the fact that: ω = 2π/∆. Re-introduce proper norming
factors, at last:

P (x) :=
1

σN
√

2π
P (x) =

1
N

[
1
∆

+
1

∆/2

∞∑
k=1

e−(kωσ)2/2 cos(kωx)

]
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