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Chebyshev Polynomials have shown up in my homework as a by-product of
Cosine Expansions and DoubleGrid - TripleGrid Calculus:

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/cospower.pdf

http://hdebruijn.soo.dto.tudelft.nl/hdb_spul/calculus.pdf

http://hdebruijn.soo.dto.tudelft.nl/jaar2006/drievoud.pdf

Further musings on the subject have been motivated by a poster in the Usenet
group ’sci.math.num-analysis’:

http://groups.google.nl/group/sci.math.num-analysis/msg/24d6a06635f30b5a

The technique to be employed preferrably for solving differential equations is
known as Heaviside’s Operational Calculus, also called Operator Calculus. This
Operator Calculus is an absolute prerequisite for everything that follows here.
The next article provides a lucid exposition of the methods involved:

http://hdebruijn.soo.dto.tudelft.nl/jaar2004/uitboek.pdf

Special Solutions

The differential equation named after Pafnuty Chebyshev is:

(1− x2)
d2Tn(x)
dx2

− xdTn(x)
dx

+ n2Tn(x) = 0

When cast in Operator Calculus format, it reads:[
(1− x2)

(
d

dx

)2

− x d

dx
+ n2

]
Tn(x) = 0

We shall try to find a factorization:[
(1− x2)

(
d

dx

)2

− x d

dx
+ n2

]
=
[
(1 + x)

d

dx
+ α

] [
(1− x)

d

dx
+ β

]
Or alternatively:[

(1− x2)
(
d

dx

)2

− x d

dx
+ n2

]
=
[
(1− x)

d

dx
+ α

] [
(1 + x)

d

dx
+ β

]
Working out the first alternative, with the rule d/dxf = fd/dx+ f ′ :[

(1 + x)
d

dx
+ α

] [
(1− x)

d

dx
+ β

]
=

1



(1 + x)
d

dx
(1− x)

d

dx
+ α(1− x)

d

dx
+ β(1 + x)

d

dx
+ αβ =

(1− x2)
(
d

dx

)2

+ [−(1 + x) + α(1− x) + β(1 + x)]
d

dx
+ αβ =[

(1− x2)
d2

dx2
− x d

dx
+ n2

]
It follows that:

−(1 + x) + α(1− x) + β(1 + x) = (−1 + α+ β) + (−1− α+ β)x = −x

⇐⇒ α+ β = 1 and α = β ⇐⇒ α = β =
1
2

Working out the second alternative:[
(1− x)

d

dx
+ α

] [
(1 + x)

d

dx
+ β

]
=

(1− x)
d

dx
(1 + x)

d

dx
+ α(1 + x)

d

dx
+ β(1− x)

d

dx
+ αβ =

(1− x2)
(
d

dx

)2

+ [+(1− x) + α(1 + x) + β(1− x)]
d

dx
+ αβ =[

(1− x2)
d2

dx2
− x d

dx
+ n2

]
It follows that:

+(1− x) + α(1 + x) + β(1− x) = (1 + α+ β) + (−1 + α− β)x = −x

⇐⇒ α+ β = −1 and α = β ⇐⇒ α = β = −1
2

Thus, with such a factorization, only a quite special case of the differential
equation can be handled:[

(1− x2)
d2

dx2
− x d

dx
+ n2

]
Tn(x) = 0 where n = ±1

2

The following may be considered as the Main Formula of Operator Calculus:∣∣∣∣∣ ddx + f = e−
∫
f dx d

dx
e+
∫
f dx

∣∣∣∣∣
With help this formula, we find for the different factors of the very special
differential equation by Chebyshev:[

(1− x)
d

dx
+

1
2

]
= (1− x)

[
d

dx
+

1
2

1
1− x

]
=

2



(1− x) e−
∫

1/(2(1−x)) dx d

dx
e+
∫

1/(2(1−x)) dx =

(1− x) eln(1−x)/2 d

dx
e−ln(1−x)/2 =⇒[

(1− x)
d

dx
+

1
2

]
= (1− x)

√
1− x d

dx

1√
1− x

And in very much the same way:[
(1− x)

d

dx
− 1

2

]
= (1− x)

1√
1− x

d

dx

√
1− x

[
(1 + x)

d

dx
+

1
2

]
= (1 + x)

1√
1 + x

d

dx

√
1 + x[

(1 + x)
d

dx
− 1

2

]
= (1 + x)

√
1 + x

d

dx

1√
1 + x

Thus there are two ways of solving:[
(1− x2)

d2

dx2
− x d

dx
+

1
4

]
T+1/2(x) =

[
(1 + x)

d

dx
+

1
2

] [
(1− x)

d

dx
+

1
2

]
T+1/2(x) =[

(1 + x)
1√

1 + x

d

dx

√
1 + x(1− x)

√
1− x d

dx

1√
1− x

]
T+1/2(x) = 0

=⇒ (1− x)
√

1− x2
d

dx

1√
1− x

T+1/2(x) = C

=⇒ T+1/2(x) = C
√

1− x
∫

dx

(1− x)
√

1− x2

On the other hand: [
(1− x2)

d2

dx2
− x d

dx
+

1
4

]
T−1/2(x) =

[
(1− x)

d

dx
− 1

2

] [
(1 + x)

d

dx
− 1

2

]
T−1/2(x) =[

(1− x)
1√

1− x
d

dx

√
1− x(1 + x)

√
1 + x

d

dx

1√
1 + x

]
T−1/2(x) = 0

=⇒ (1 + x)
√

1− x2
d

dx

1√
1 + x

T−1/2(x) = C

=⇒ T−1/2(x) = C
√

1 + x

∫
dx

(1 + x)
√

1− x2
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It certainly helps to know the following facts, with (u/v)′ = (u′v − v′u)/v2 and
d
√

1± x/dx = ±1/
√

1± x :

d

dx

(√
1 + x

1− x

)
=
√

1− x/
√

1 + x+
√

1 + x/
√

1− x
1− x

=

1− x+ 1 + x√
1− x

√
1 + x(1− x)

=
1

(1− x)
√

1− x2

=⇒
∫

dx

(1− x)
√

1− x2
=

√
1 + x

1− x

=⇒ T+1/2(x) = C
√

1− x

[√
1 + x

1− x
+D

]
= A
√

1− x+B
√

1 + x

d

dx

(√
1− x
1 + x

)
=
−
√

1 + x/
√

1− x−
√

1− x/
√

1 + x

1 + x
=

−1 + x− 1− x√
1− x

√
1 + x(1 + x)

=
1

(1 + x)
√

1− x2

=⇒
∫

dx

(1 + x)
√

1− x2
=

√
1− x
1 + x

=⇒ T−1/2(x) = C
√

1 + x

[√
1− x
1 + x

+D

]
= A
√

1− x+B
√

1 + x

Where A and B are arbitrary integration constants. It is concluded that the
general form of a special solution of the Chebyshev differential equation is:

T−1/2(x) = T+1/2(x) = A
√

1− x+B
√

1 + x

Ladder Operators

The following is essentially a elaboration of Chebyshev polynomials, which is a
rather terse paragraph 3.4 in:

http://www.smf.mx/rmf/pdf/rmf/49_4/49_358.pdf

The big trick is to write the Chebyshev differential equation in a slightly different
form, multiplied namely with a factor (1− x2). Then the very same differential
equation named after Pafnuty Chebyshev becomes:

(1− x2)2 d
2Tn(x)
dx2

− (1− x2)x
dTn(x)
dx

+ (1− x2)n2Tn(x) = 0
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When cast in Operator Calculus format, it reads:[
(1− x2)2

(
d

dx

)2

− (1− x2)x
d

dx
+ (1− x2)n2

]
Tn(x) = 0

We shall try to find a factorization again. Be careful:[
(1− x2)2

(
d

dx

)2

− (1− x2)x
d

dx
+ (1− x2)n2

]
=

[
(1− x2)

d

dx
+ αx

] [
(1− x2)

d

dx
+ β x

]
=

(1− x2)
d

dx
(1− x2)

d

dx
+ αx(1− x2)

d

dx
+ (1− x2)

d

dx
β x+ αxβ x =

(1− x2)2 d
2

dx2
+

[
−2x(1− x2) + αx(1− x2) + (1− x2)β x

] d
dx

+

(1− x2)β + αβ x2

Where:
−2x(1− x2) + αx(1− x2) + (1− x2)β x = −x(1− x2)

=⇒ −2 + α+ β = −1 =⇒ β = 1− α and α = 1− β

And:
(1− x2)β + αβ x2 = (1− x2)β − αβ(1− x2) + αβ =

(1− x2)β(1− α) + αβ = (1− x2)β2 + αβ = (1− x2)n2

If we put β = +n then α = −(n − 1) and a factor −αβ = n(n − 1) must be
added to the the left and to the right hand side:[

(1− x2)
d

dx
− (n− 1)x

] [
(1− x2)

d

dx
+ nx

]
Tn(x) = n(n− 1)Tn(x)

If we put β = −n then α = (n+ 1) and a factor −αβ = n(n+ 1) must be added
to the the left and to the right hand side:[

(1− x2)
d

dx
+ (n+ 1)x

] [
(1− x2)

d

dx
− nx

]
Tn(x) = n(n+ 1)Tn(x)

Now define the following operator:

Om =
[
(1− x2)

d

dx
+mx

]
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Then the differential equation by Chebyshev assumes one of the following forms:

O−(n−1) O+n Tn(x) = n(n− 1) Tn(x)
O+(n+1) O−n Tn(x) = n(n+ 1) Tn(x)

Multiply the first of these two equations on the left with the operator O+n,
times an arbitrary constant c1 eventually:

c1 O+n

[
O−(n−1) O+n

]
Tn(x) = c1 O+n n(n− 1)Tn(x)[

O+(n−1)+1 O−(n−1)

]
c1 O+n Tn(x) = n(n− 1) c1 O+n Tn(x)

Which demonstrates that c1 O+n Tn(x) is a solution of the differential equation
for n := n− 1. This means that, effectively:

c1 O+n Tn(x) = Tn−1(x) = c1

[
(1− x2)

d

dx
+ nx

]
Tn(x)

For this reason, the operator O+n is called a lowering operator.
Multiply the second of the two equations on the left with the operator O−n,
times an arbitrary constant c2 eventually:

c2 O−n
[
O+(n+1) O−n

]
Tn(x) = c2 O−n n(n+ 1)Tn(x)[

O−(n+1)+1 O+(n+1)

]
c2 O−n Tn(x) = n(n+ 1) c2 O−n Tn(x)

Which demonstrates that c2 O−n Tn(x) is a solution of the differential equation
for n := n+ 1. This means that, effectively:

c2 O−n Tn(x) = Tn+1(x) = c2

[
(1− x2)

d

dx
− nx

]
Tn(x)

For this reason, the operator O−n is called a raising operator. The raising and
lowering operators together are called ladder operators, because they enable us
to construct a whole sequence of solutions, once we have found only one of the
possible ones. Let’s repeat the result:

c1

[
(1− x2)

d

dx
− nx

]
Tn(x) = Tn+1(x)

c2

[
(1− x2)

d

dx
+ nx

]
Tn(x) = Tn−1(x)

If we add these equations together, then:

Tn+1(x) + Tn−1(x) = [−nc1 + nc2]x Tn(x) + [c1 + c2] (1− x2)
dTn
dx

While the well known recursion relation for Chebyshev Polynomials is:

Tn+1(x) + Tn−1(x) = 2x Tn(x)
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So if we put the arbitrary constants c1,2 to well defined values, namely c1 = −1/n
and c2 = +1/n, then the recursion relation for solutions of the Chebyshev
differential equation becomes the same as the one for Chebyshev polynomials:

Tn+1(x) + Tn−1(x) = 2x Tn(x)

And the ladder relations become exactly as in paragraph 3.4 of the paper on
One-parameter isospectral special functions :[

(1− x2)
d

dx
− nx

]
Tn(x) = −n Tn+1(x)[

(1− x2)
d

dx
+ nx

]
Tn(x) = +n Tn−1(x)

Whole Integer Solutions

The differential equation named after Pafnuty Chebyshev is:

(1− x2)
d2Tn(x)
dx2

− xdTn(x)
dx

+ n2Tn(x) = 0

When cast in Operator Calculus format, it reads:[
(1− x2)

(
d

dx

)2

− x d

dx
+ n2

]
Tn(x) = 0

We shall try to find a factorization for n = 0:[
(1− x2)

(
d

dx

)2

− x d

dx

]
T0(x) = 0

[
(1− x2)

d

dx
− x
]
d

dx
T0(x) = 0

The following may be considered as the Main Formula of Operator Calculus:

d

dx
+ f = e−

∫
f dx d

dx
e+
∫
f dx

With help this formula, we find for the main factor of Chebyshev’s differential
equation for n = 0:

(1− x2)
d

dx
− x = (1− x2)

[
d

dx
+

1
2
−2x

1− x2

]
=

(1− x2) exp
[
−1

2

∫
d(1− x2)

1− x2

]
d

dx
exp

[
+

1
2

∫
d(1− x2)

1− x2

]
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Herewith we can complete the sequence of formulas leading to the solution:

(1− x2)
1√

1− x2

d

dx

√
1− x2

d

dx
T0(x) = 0 =⇒

√
1− x2

d

dx
T0(x) = B =⇒

T0(x) = B

∫
dx√

1− x2
= A+B arccos(x)

Where A and B are arbitrary integration constants.
In order to find a clue for determining the solutions T1(x) for n = 1, we take
a closer look at the first operator representation of Chebyshev’s differential
equation, as has been derived in the paragraph Ladder Operators:[

(1− x2)
d

dx
− (n− 1)x

] [
(1− x2)

d

dx
+ nx

]
Tn(x) = n(n− 1)Tn(x)

In our case n = 1, therefore:

(1− x2)
d

dx

[
(1− x2)

d

dx
+ x

]
T1(x) = 0

=⇒
[
(1− x2)

d

dx
+ x

]
T1(x) = C

Employing almost the same procedure as above, we find:

(1− x2)
d

dx
+ x = (1− x2)

[
d

dx
− 1

2
−2x

1− x2

]
=

(1− x2) exp
[
+

1
2

∫
d(1− x2)

1− x2

]
d

dx
exp

[
−1

2

∫
d(1− x2)

1− x2

]
And we can complete the sequence of formulas leading to the solution:

(1− x2)
√

1− x2
d

dx

1√
1− x2

T1(x) = C =⇒

T1(x) = C
√

1− x2

[∫
dx

(1− x2)
√

1− x2

]
The solution is:

T1(x) = C
√

1− x2

[
x√

1− x2
+D/C

]
= Cx+D

√
1− x2

Where C and D are arbitrary integration constants.
Time to repeat the ladder relations:[

(1− x2)
d

dx
− nx

]
Tn(x) = −n Tn+1(x)[

(1− x2)
d

dx
+ nx

]
Tn(x) = +n Tn−1(x)
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When specified for n = 0, the first ladder relation reads:[
(1− x2)

d

dx

]
T0(x) = 0 ⇐⇒ T0(x) = A

Where A is an arbitrary integration constant. Thus we see that B arccos(x)
inevitably must drop out of the ladder solutions. But let’s see what happens,
nevertheless, if we don’t do this. With the recurrence relation for Chebyshev
functions we find:

T2(x) = 2xT1(x)− T0(x) = 2x
[
Cx+D

√
1− x2

]
−A−B arccos(x)

When substituted into the Chebyshev differential equation for n = 2 :

> simplify((1-x^2)*diff(diff(T2(x),x),x)-x*diff(T2(x),x)+2^2*T2(x));

4C − 4A− 4B arccos(x)

Indeed, we can only force the outcome to zero if B = 0 and if A = C :

T2(x) = 2x(Ax+D
√

1− x2)−A = A(2x2 − 1) +Dx
√

1− x2

Where A and B are arbitrary integration constants. The first term is A times
the second order Chebyshev polynomial of the first kind.
Let’s proceed one step further, where we use the fact that the constants D in
T1(x) and T2(x) are quite arbitrary and hence may be set to different values,
say D = D1 and D = D2 respectively:

T3(x) = 2x
[
A(2x2 − 1) +D2x

√
1− x2

]
−
[
Ax+D1

√
1− x2

]
> simplify((1-x^2)*diff(diff(T3(x),x),x)-x*diff(T3(x),x)+3^2*T3(x));

4(−D2x
2 + 2D1x

2 +D2 − 2D1)√
1− x2

So T3(x) is a solution if and only if D2 = 2D1. We have re-discovered the
Chebyshev polynomials of the second kind. The factor 2 is in the U2(x) defini-
tion below:

U0(x) = 1
U1(x) = 2x

Uk+1(x) = 2xUk(x)− Uk−1(x)

We have a problem with the notation by now. So far, we have reserved the names
Tn for denoting all solution functions of the Chebyshev differential equation. But
it is better to restrict these names to Chebyshev polynomials of the first kind,
as it is usually done:

T0(x) = 1
T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x)
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And we shall introduce a brand new notation Sn(x) for the Solutions of the
Chebyshev differential equation. With the third step in the solution process:

S3(x) = AT3(x) +B
√

1− x2 U2(x) = A(4x3 − 3x) +B
√

1− x2 (4x2 − 1)

Where A and B are arbitrary integration constants.
Now we wonder if this leaves us alone with Chebyshev Polynomials of the first
and second kind as proper solutions of the CDE for all orders n . But let’s first
summarize the solutions that we already have:

S0(x) = A+B arccos(x)

S1(x) = Ax+B
√

1− x2 . 1

S2(x) = A(2x2 − 1) +B
√

1− x2 . 2x

S3(x) = A(4x3 − 3x) +B
√

1− x2 (4x2 − 1)

All other solutions can be obtained with help of the recurrence relationship
Sn+1 = 2xSn(x)−Sn−1(x) , which holds for all solution functions as well as for
both the polynomials of the first and second kind. So it follows by superposition
and mathematical induction that the general solution of Pafnuty’s differential
equation for n ≥ 1 a natural number is expressed in Chebyshev polynomials of
the first Tn(x) and second Un(x) kind:

Sn(x) = ATn(x) +B
√

1− x2 Un−1(x)

Together with a special solution S0(x) = A+B arccos(x). The formula for n ≥ 1
is confirmed by the closed form (29) on the Mathworld web page:

http://mathworld.wolfram.com/ChebyshevDifferentialEquation.html

Half Integer Solutions

Pafnuty Chebyshev’s differential equation cannot be copied and pasted enough.
It is a bit changed due to our new notation conventions, though:

(1− x2)
d2Sn(x)
dx2

− xdSn(x)
dx

+ n2Sn(x) = 0

Apart from the special case S0(x) = A+B arccos(x) for n = 0 in the differential
equation, we have found two other Special Solutions, which are associated with
half-integer values n = 1/2 and n = −1/2:

S−1/2(x) = S+1/2(x) = A
√

1− x+B
√

1 + x

Also the ladder operators cannot be copied and pasted enough to remember:[
(1− x2)

d

dx
− nx

]
Sn(x) = −n Sn+1(x)[

(1− x2)
d

dx
+ nx

]
Sn(x) = +n Sn−1(x)
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It turns out that we have to be careful with the two special solutions and use
the second of the two ladder relations to derive the following:

(1− x2)
dS1/2

dx
+

1
2
xS1/2(x) =

1
2
S−1/2(x)

With S1/2(x) =
√

1 + x :

(1− x2)
1/2√
1 + x

+
1
2
x
√

1 + x =
1
2

(1− x)
√

1 + x+
1
2
x
√

1 + x =⇒

1
2
√

1 + x =
1
2
S−1/2(x) =⇒ S−1/2(x) = S1/2(x) =

√
1 + x

With S1/2(x) =
√

1− x :

(1− x2)
−1/2√
1− x

+
1
2
x
√

1− x = −1
2

(1 + x)
√

1− x+
1
2
x
√

1− x =⇒

−1
2
√

1− x =
1
2
S−1/2(x) =⇒ S−1/2(x) = −S1/2(x) = −

√
1− x

The minus sign in the last formula is important. But, now we have found two
basis functions to start the recursion Sn+1(x) = 2xSn(x)− Sn−1(x) :

S3/2(x) = 2xS1/2(x)− S−1/2(x)

With S1/2(x) =
√

1 + x :

S3/2(x) = 2x
√

1 + x−
√

1 + x = (2x− 1)
√

1 + x

With S1/2(x) =
√

1 + x :

S3/2(x) = 2x
√

1− x+
√

1− x = (2x+ 1)
√

1− x

The general solution is, of course, a linear combination of the two:

S3/2(x) = A (2x− 1)
√

1 + x+B (2x+ 1)
√

1− x

Let’s check this with MAPLE:

> S(x) := A*(2*x-1)*sqrt(1+x) + B*(2*x+1)*sqrt(1-x);

> simplify((1-x^2)*diff(diff(S(x),x),x)-x*diff(S(x),x)+(3/2)^2*S(x));

0

Proceeding in this way, we can construct all half integer solutions of Pafnuty
Chebyshev’s differential equation. They are of the form:

S(2n+1)/2(x) = APn(x)
√

1 + x+BQn(x)
√

1− x

11



Where n ≥ 0 is a natural and the polynomials Pn(x) and Qn(x) are generated
by the following recursion relations:

P0(x) = 1
P1(x) = 2x− 1

Pn+1(x) = 2xPn(x)− Pn−1(x)

Q0(x) = 1
Q1(x) = 2x+ 1

Qn+1(x) = 2xQn(x)−Qn−1(x)

Derivatives

The ladder relations have become exactly as in paragraph 3.4 of the paper on
One-parameter isospectral special functions:[

(1− x2)
d

dx
− nx

]
Tn(x) = −n Tn+1(x)[

(1− x2)
d

dx
+ nx

]
Tn(x) = +n Tn−1(x)

If we add these equations togther again, then:

2(1− x2)
dTn
dx

= −n [Tn+1(x)− Tn−1(x)]

Giving for the derivative of a Chebyshev solution function:

dTn
dx

=
n

2(x2 − 1)
[Tn+1(x)− Tn−1(x)]

Remember the recursion relationship:

Tn+1(x) + Tn−1(x) = 2xTn(x)

With help of this, we can do the following:

Tn+1(x)− Tn−1(x) = 2xTn(x)− 2Tn−1(x) =

2x [2xTn−1(x)− Tn−2(x)]− 2Tn−1(x) =

4(x2 − 1)Tn−1(x) + 2Tn−1(x)− 2xTn−2(x) =

4(x2 − 1)Tn−1(x) + 2Tn−1(x)− [Tn−1(x) + Tn−3(x)] =

4(x2 − 1)Tn−1(x) + [Tn−1(x)− Tn−3(x)]

Herewith:
dTn
dx

=
n

2(x2 − 1)
[Tn+1(x)− Tn−1(x)] =

12



2nTn−1(x) +
n

2(x2 − 1)
[Tn−1(x)− Tn−3(x)]

So we have a recursion formula expressing the derivative of Chebyshev function
into a sequence of lower order Chebyshev functions:

dTn
dx

= 2nTn−1(x) + 2nTn−3(x) + 2nTn−5(x) + . . . + (last term)

Where the last term can be one of these two:
n

2(x2 − 1)
[T3(x)− T1(x)] or

n

2(x2 − 1)
[T2(x)− T0(x)]

If solutions of the Chebyshev differential equation are restricted to Chebyshev
polynomials of the first kind, then we have T3(x) = 4x3− 3x , T2(x) = 2x2− 1 ,
T1(x) = x , T0(x) = 1 . Herewith:

n

2(x2 − 1)
[T3(x)− T1(x)] = 2n.x or

n

2(x2 − 1)
[T2(x)− T0(x)] = n

Let’s concentrate on the value of the derivative at x = 1. From the definition
of the Chebyshev polynomials Tn(x) = cos[h](n arccos[h](x)) it is clear that, for
all n : Tn(1) = 1. And x = 1 is the only place where all polynomials assume
that maximum value, at the interval [−1,+1]. Thus the derivatives dTn(x)/dx
assume their maximum value at that point as well. We can even calculate what
the maximum is. For even n we have n/2 terms 2n, giving a total of n/2.2n = n2.
For odd n we have (n− 1)/2 terms equal to 2n and one term equal to n, giving
a total of (n− 1)/2.2n+ n = n2. Both sequences add up to n2. Thus:

dTn(x)
dx

∣∣∣∣
x=1

= n2

Generating Functions

Employed is only the recurrence relation which is valid for all of the solutions
of the Chebyshev differential equation:

Sn+1(x) + Sn−1(x) = 2xSn(x)

Let F (z, x) be the Generating Function, then by definition:

F (z, x) = S0(x) + S1(x).z + S2(x).z2 + S3(x).z3 + . . . .

Hence:

z2F (z, x) = S0(x).z2 + S1(x).z3 + S2(x).z4 + S3(x).z5 + . . . .

Add these two equations together:

F (z, x) + z2.F (z, x) = S0(x) + S1(x).z +

13



[S2(x) + S0(x)] z2 + [S3(x) + S1(x)] z3 + . . . .

And use the recurrence relation:

F (z, x) + z2.F (z, x) = S0(x) + S1(x).z − 2xz.S0(x) +

2xS0(x)z + 2xS1(x)z2 + 2xS2(x)z3 + . . . .

= (1− 2xz)S0(x) + z.S1(x) + 2xz
[
S0(x) + S1(x).z + S2(x).z2 + . . . .

]
= (1− 2xz)S0(x) + z.S1(x) + 2xz.F (z, x)

Solve for F (z, x) :

F (z, x)(1− 2xz + z2) = (1− 2xz)S0(x) + z.S1(x) =⇒

F (z, x) =
(1− 2xz)S0(x) + z.S1(x)

1− 2xz + z2

We have found the following initializations for Chebyshev polynomials:

S0(x) = 1 and S1(x) =


x (first kind)
2x (second kind)
2x− 1 (half integer)
2x+ 1 (half integer)

Respectively resulting in the following set of Generating Functions:

F (z, x) =



1−xz
1−2xz+z2

1
1−2xz+z2

1−z
1−2xz+z2

1+z
1−2xz+z2

We can do some more with the general formula if we factorize the denominator:

z2 − 2xz + 1 = (z − α)(z − β) ⇐⇒ α+ β = 2x and αβ = 1

Where we find:

α = x+
√
x2 − 1 and β = x−

√
x2 − 1

Split into partial fractions:

F (z, x) =
A

z − α
+

B

z − β
=
A(z − β) +B(z − α)

(z − α)(z − β)

=
(A+B)z − (Aβ +Bα)

(z − α)(z − β)
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On the other hand:

F (z, x) =
[S1(x)− 2xS0(x)] z + S0(x)

z2 − 2xz + 1

A+B = S1(x)− 2xS0(x)
βA+ αB = −S0(x)

Two equations with two unknowns. The solution is:

A = +
α [S1(x)− 2xS0(x)] + S0(x)

α− β
= +

αS1(x) + [1− 2αx]S0(x)
α− β

B = −β [S1(x)− 2xS0(x)] + S0(x)
α− β

= −βS1(x) + [1− 2βx]S0(x)
α− β

This can be simplified even further:

1− 2xα = αβ − (α+ β)α = −α2 =⇒ A = α
S1(x)− αS0(x)

α− β

1− 2xβ = αβ − (α+ β)β = −β2 =⇒ B = β
−S1(x) + βS0(x)

α− β
We proceed as follows:

F (z, x) =
A

z − α
+

B

z − β
= −A

α

1
1− z/α

− B

β

1
1− z/β

= −A
α

[
1 +

1
α
z +

1
α2
z2 +

1
α3
z3 +

1
α4
z4 + . . . .

]
−B
β

[
1 +

1
β
z +

1
β2
z2 +

1
β3
z3 +

1
β4
z4 + . . . .

]
= −

[
A

α
+
B

β

]
−
[
A

α2
+
B

β2

]
z −

[
A

α3
+
B

β3

]
z2 −

[
A

α4
+
B

β4

]
z3 + . . . .

On the other hand we have:

F (z, x) = S0(x) + S1(x).z + S2(x).z2 + S3(x).z3 + . . . .

Conclusion:

Sn(x) = −
[
A

α

1
αn

+
B

β

1
βn

]
=
−S1(x) + αS0(x)

α− β
1
αn

+
S1(x)− βS0(x)

α− β
1
βn

In all cases known to us we have that S0(x) = 1 . Hence:

Sn(x) =
−S1(x) + x+

√
x2 − 1

2
√
x2 − 1

(x−
√
x2 − 1)n
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+
S1(x)− x+

√
x2 − 1

2
√
x2 − 1

(x+
√
x2 − 1)n

The most well-known result is the one for Chebyshev polynomials of the first
kind. In that case S1(x) = x and Sn(x) = Tn(x) . Hence:

Tn(x) =
(x−

√
x2 − 1)n + (x+

√
x2 − 1)n

2

Which appears in many other forms in the litterature and on the Internet, for
example:

http://www.focusonmath.org/FOM/resources/publications/MT2004-08-20a.pdf

http://en.wikipedia.org/wiki/Chebyshev_polynomial

The only new thing here may be that such formulas can also be derived for the
polynomials in the half integer solutions of the Chebyshev differential equation.

Cosine Space

Many things with Chebyshev Polynomials become more transparent if we keep
in mind that there exists kind of a mapping between Polynomial Space and
Cosine Space. What do we mean by this? The following.

Tn(x) = cos(n arccos(x)) where − 1 ≤ x ≤ +1

Or, in a more instructive form:

Tn(θ) = cos(n θ) where: x = cos(θ) and − π ≤ θ ≤ 0

Here Tn as a function of x is called Polynomial Space and Tn as a function of θ
is called Cosine Space. The mapping between the two can be visualized as has
been done on my web site:

http://hdebruijn.soo.dto.tudelft.nl/jaar2006/pafnuty1.htm
http://hdebruijn.soo.dto.tudelft.nl/jaar2006/pafnuty2.htm

The density Dθ(x) of the angles θ in Polynomial Space can be determined with
my theory of Exact Densities .

Dθ(x) dx = d arccos(x) =⇒ D(x) =
1√

1− x2

Which shows that the angles become infinitely dense near the boundaries x =
±1. The reverse problem is the density Dx(θ) of the x-coordinates in Cosine
Space:

Dx(θ) dθ = d cos(θ) =⇒ Dx(θ) = − sin(θ)

Which shows that the x-coordinates have zero density near the boundaries θ =
{−π, 0}. So far so good. Let’s go for the derivatives.

T ′n(θ) =
dTn(x)
dx

dx

dθ
= −T ′n(x) sin(θ) = −T ′n(x)

√
1− x2
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T ′′n (θ) =
d

dθ
[−T ′n(x) sin(θ)] = −T ′′n (x)

dx

dθ
sin(θ)− T ′n(x) cos(θ) =

(1− x2)T ′′n (x)− xT ′n(x)

But wait! The differential equation named after Pafnuty Chebyshev is:

(1− x2)
d2Tn(x)
dx2

− xdTn(x)
dx

+ n2Tn(x) = 0

Thus in Cosine Space, it says:

d2Tn(θ)
dθ2

+ n2Tn(θ) = 0

So it’s no surprise anymore that its solutions are also given by Tn(θ) = cos(n θ),
hence that Tn(x) = cos(n arccos(x)) , which has been a mystery, until now. But
it seems that we are not finished. There is also a domain of interest with this
differential equation for x > 1. Instead of x = cos(θ), substitute x = cosh(p).
And let’s go for the derivatives again:

T ′n(p) =
dTn(x)
dx

dx

dp
= T ′n(x) sinh(p) = T ′n(x)

√
cosh2(p)− 1 = T ′n(x)

√
x2 − 1

T ′′n (p) =
d

dp
[T ′n(x) sinh(p)] = T ′′n (x)

dx

dp
sinh(p) + T ′n(x) cosh(p) =

(x2 − 1)T ′′n (x) + xT ′n(x) = −
[
(1− x2)T ′′n (x)− xT ′n(x)

]
Thus in Hyperbolic Cosine Space, it says:

d2Tn(p)
dp2

− n2Tn(p) = 0

So it’s no surprise anymore that its solutions are also given by Tn(p) = cosh(n p),
hence that Tn(x) = cosh(n arccosh(x)) .
Final roundup. Considerable effort was spent in proving the following theorem:

dTn(x)
dx

∣∣∣∣
x=1

= n2

Within Cosine Space, gathering evidence is much easier:

T ′n(x) =
dTn(θ)
dθ

dθ

dx
=
n sin(n θ)

sin(θ)

Hence for (x = 1)⇐⇒ (θ = 0) :

T ′n(1) = lim
θ→0

n2 sin(n θ)
n θ

θ

sin(θ)
= n2

Disclaimers:

Anything free comes without referee :-(
My English may be better than your Dutch.
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