Ladder Operators

The following is essentially a elaboration on Chebyshev polynomials. The big trick is to write the Chebyshev differential equation in a slightly different form, multiplied namely with a factor $(1-x^2)$. Then the very same differential equation named after Pafnuty Chebyshev becomes: $$ (1-x^2)^2\frac{d^2T_n(x)}{dx^2} - (1-x^2)x\frac{dT_n(x)}{dx} + (1-x^2)n^2 T_n(x) = 0 $$ When cast in Operator Calculus format, it reads: $$ \left[ (1-x^2)^2\left(\frac{d}{dx}\right)^2 - (1-x^2)x\frac{d}{dx} + (1-x^2)n^2 \right] T_n(x) = 0 $$ We shall try to find a factorization again. Be careful: $$ \left[ (1-x^2)^2\left(\frac{d}{dx}\right)^2 - (1-x^2)x\frac{d}{dx} + (1-x^2)n^2 \right] = \\ \left[ (1-x^2) \frac{d}{dx} + \alpha\,x \right] \left[ (1-x^2) \frac{d}{dx} + \beta\,x \right] = \\ (1-x^2) \frac{d}{dx} (1-x^2) \frac{d}{dx} + \alpha\,x (1-x^2) \frac{d}{dx} + (1-x^2) \frac{d}{dx} \beta\,x + \alpha\,x \beta\,x = \\ (1-x^2)^2 \frac{d^2}{dx^2} + \\ \left[- 2 x (1-x^2) + \alpha\,x (1-x^2) + (1-x^2) \beta\,x \right] \frac{d}{dx} + \\ (1-x^2) \beta + \alpha\beta\,x^2 $$ Where: $$ - 2 x (1-x^2) + \alpha\,x (1-x^2) + (1-x^2) \beta\,x = - x (1-x^2) \\ \Longrightarrow \quad - 2 + \alpha + \beta = - 1 \quad \Longrightarrow \quad \beta = 1-\alpha \quad \wedge \quad \alpha=1-\beta $$ And: $$ (1-x^2) \beta + \alpha\beta\,x^2 = (1-x^2) \beta - \alpha\beta(1-x^2) + \alpha\beta = \\ (1-x^2) \beta(1-\alpha) + \alpha\beta = (1-x^2) \beta^2 + \alpha\beta = (1-x^2) n^2 $$ If we put $\beta = + n$ then $\alpha = -(n-1)$ and a factor $-\alpha\beta = n(n-1)$ must be added to the the left and to the right hand side: $$ \left[ (1-x^2) \frac{d}{dx} - (n-1)\,x \right] \left[ (1-x^2) \frac{d}{dx} + n\,x \right] T_n(x) = n(n-1) T_n(x) $$ If we put $\beta = - n$ then $\alpha = (n+1)$ and a factor $-\alpha\beta = n(n+1)$ must be added to the the left and to the right hand side: $$ \left[ (1-x^2) \frac{d}{dx} + (n+1)\,x \right] \left[ (1-x^2) \frac{d}{dx} - n\,x \right] T_n(x) = n(n+1) T_n(x) $$ Now define the following operator: $$ O_m = \left[ (1-x^2) \frac{d}{dx} + m\,x \right] $$ Then the differential equation by Chebyshev assumes one of the following forms: \begin{eqnarray*} O_{-(n-1)}\; O_{+n}\; T_n(x) &=& n(n-1)\; T_n(x) \\ O_{+(n+1)}\; O_{-n}\; T_n(x) &=& n(n+1)\; T_n(x) \end{eqnarray*} Multiply the first of these two equations on the left with the operator $O_{+n}$, times an arbitrary constant $c_1$ eventually: $$ c_1\;O_{+n} \left[ O_{-(n-1)}\; O_{+n} \right] T_n(x) = c_1\;O_{+n}\; n(n-1) T_n(x) \\ \left[ O_{+(n-1)+1}\; O_{-(n-1)} \right] c_1\;O_{+n}\; T_n(x) = n(n-1)\; c_1\;O_{+n}\; T_n(x) $$ Which demonstrates that $c_1\;O_{+n}\;T_n(x) $ is a solution of the differential equation for $ n := n-1$. This means that, effectively: $$ c_1\;O_{+n}\;T_n(x) = T_{n-1}(x) = c_1\;\left[ (1-x^2) \frac{d}{dx}+n\,x \right] T_n(x) $$ For this reason, the operator $O_{+n}$ is called a lowering operator.
Multiply the second of the two equations on the left with the operator $O_{-n}$, times an arbitrary constant $c_2$ eventually: $$ c_2\;O_{-n} \left[ O_{+(n+1)}\; O_{-n} \right] T_n(x) = c_2\;O_{-n}\; n(n+1) T_n(x) \\ \left[ O_{-(n+1)+1}\; O_{+(n+1)} \right] c_2\;O_{-n}\; T_n(x) = n(n+1)\; c_2\;O_{-n}\; T_n(x) $$ Which demonstrates that $c_2\;O_{-n}\;T_n(x) $ is a solution of the differential equation for $ n := n+1$. This means that, effectively: $$ c_2\;O_{-n}\;T_n(x) = T_{n+1}(x) = c_2\;\left[ (1-x^2) \frac{d}{dx}-n\,x \right] T_n(x) $$ For this reason, the operator $O_{-n}$ is called a raising operator. The raising and lowering operators together are called ladder operators, because they enable us to construct a whole sequence of solutions, once we have found only one of the possible ones. Let's repeat the result: $$ c_1\;\left[ (1-x^2) \frac{d}{dx} - n\,x \right] T_n(x) = T_{n+1}(x) \\ c_2\;\left[ (1-x^2) \frac{d}{dx} + n\,x \right] T_n(x) = T_{n-1}(x) $$ If we add these equations together, then: $$ T_{n+1}(x) + T_{n-1}(x) = \left[ -n c_1 + n c_2 \right] x\; T_n(x) + \left[ c_1 + c_2 \right] (1-x^2) \frac{dT_n}{dx} $$ While the well known recursion relation for Chebyshev Polynomials is: $$ T_{n+1}(x) + T_{n-1}(x) = 2 x\; T_n(x) $$ So if we put the arbitrary constants $c_{1,2}$ to well defined values, namely $c_1 = -1/n$ and $c_2 = +1/n$, then the recursion relation for solutions of the Chebyshev differential equation becomes the same as the one for Chebyshev polynomials: $$ T_{n+1}(x) + T_{n-1}(x) = 2 x\; T_n(x) $$ And the ladder relations become: $$ \left[ (1-x^2) \frac{d}{dx} - n\,x \right] T_n(x) = -n\; T_{n+1}(x) \\ \left[ (1-x^2) \frac{d}{dx} + n\,x \right] T_n(x) = +n\; T_{n-1}(x) $$