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Preface 

After my last book on scientific uncertainty was published by 
Academic Press (1964), I felt relieved and free to go back to a 
variety of problems or dreams I had been pushing aside and 
postponing. Some problems seemed clearly stated but not solved, 
while many ideas remained rather cloudy or uncertain and re-
quired a good deal of thinking over. I decided to start looking into 
relativity which I wanted to examine from a new angle and with 
an unconventional perspective; traveling along high roads is no 
fun, but wandering on forgotten tracks may lead to some wild 
summit from which you suddenly discover the whole landscape 
with an uncommon beauty. All along my scientific career I felt 
an attraction toward problems arising along the border of a 
theory, in this little known territory where it joins a domain 
reserved to another theory. How does the first theoretical descrip-
tion check with the painting drawn from the second theory: How 
can you use either wave theory or discrete particles and obtain 
similar results, both agreeing with experiments? How do you 
know where to use geometrical optics or physical light waves? 
Coming back to relativity, where and how does it rejoin classical 
mechanics? Every example may reveal some curious situation: 
sometimes (but not too often) one of the solutions may appear as a 
convergent series, where the first term corresponds to the first 
theory, but this is not a general rule. Very often one may discover 
semi-convergent series, that can be used only up to a certain term 
and come close enough to the solution of the other theory, in the 
boundary region. 

XI 



To form any notion at all of the flux of gravitational energy, we 
must first localize the energy. In this respect it resembles the 
legendary hare in the cookery book. Whether the notion will turn 
out to be a useful one is a matter for subsequent discovery. For 
this also, there is a well-known gastronomical analogy. 

Heaviside— 1893 



Introduction 

The value of a scientific theory lies in its ability to predict. In 
" Scientific Uncertainty, and Information "* it was emphasized 
that a theory T yields correct results with a certain maximum 
error ε only within a certain domain of applicability D. If one 
attempts to apply the theory too widely, outside its proper domain 
D, one shouldn't be surprised to obtain results with large errors. 
The boundary region, between domain Dx of theory Tx and 
domain D2 of an adjacent theory T2, is always very interesting 
to explore, and such an exploration may lead to the discovery of 
a variety of unspecified implicit assumptions made by the theo-
retician in his own field. 

Every theory contains a number of quantities that can be 
measured by experiments and a few expressions that cannot 
possibly be observed. The first represent the observables, and the 
second are the unobservables. The distinction is not always made 
and many authors claim some data to be observable, according 
to arbitrary definitions, which do not correspond to any physical 
experiment. This leads to inconsistencies and paradoxes that 
should be avoided at all cost. Here I would take the strictest point 
of view and assume (after Bridgman) that an observable can be 
selected only if it corresponds to carefully described experimental 
equipment and method of observation. 

If this is done, theory Tl 5 within its domain Dx, describes re-
lations among its observables 0 l 5 but also adds to this stock all 

* Brillouin, 1964; hereafter referred to as SU. 
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sorts of relations containing unobservables Uv These addition-
al relations may be useful for a " description " of the theory, 
but they have no scientific meaning. Along the boundary be-
tween domain Dx and domain D2, the relations between observ-
ables 0X and 0 2 should be in close correspondence, but there 
will be discordances between references to unobservables Ul 

and U2. These discontinuities, once recognized, do not matter 
much. 

At this point we may raise a most important question: How 
much confidence do scientific theories deserve? The answer must be 
cautious enough: a good deal, but not too much! There are 
limitations to all our theories; they are good up to a certain limit 
and within certain boundaries. They do not represent " The 
truth, nothing but the truth ... ." Every theory is based on 
experiments that have been checked very carefully, but the re-
sult can only be stated " within possible errors " between fixed 
limits according to the best knowledge of the experimenter. There 
is always a possibility that a new, unpredictable cause of errors 
might be playing a role in a new experiment, or that the theory 
has been extrapolated too far from its domain. 

Let me stop a minute for a short story: I was driving through 
New Mexico, some years ago, and found myself entering a 
charming little city, called " Tru th or Consequences." I stopped 
in front of the sign at the city limits, and wondered, what sort of 
" truth " was this? Certainly not scientific truth, and I smelled 
the reeking smoke of old pyres, the stink of intolerance; I ima-
gined how poor pagan natives had been mistreated or witches 
tormented. 

Scientific truth should never be taken so seriously, and every 
scientist must be ready to accept some adjustment and correction 
of his pet theories. There is no absolute truth in science, and here 
I must state that I am thinking of experimental science. Mathe-
matics is another story. 

Some traditional sciences are a curious mixture of observations, 
coupled with interpretations based on the best theories, but with 
an extrapolation so far from actual experiments that one may feel 
shivering and wondering: How much wishful thinking, how much 
science fiction. It is splendid to discuss the creation of our world, 
but never forget that you are dreaming, and do not expect the 
reader to believe in any model, whether with a sudden atomic 
explosion or with a story expanding back and forth from - oo to 
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+ 00. All this is too wonderful to be true, too incredible to be 
believable. 

Excuse me for another story: As a student at the University of 
Paris I attended a splendid series of lectures by Poincare. For 
many years all the lectures delivered by Poincare were immedi-
ately transcribed by one of his students and published by 
Gauthier-Villars. The student in charge may have been Borel, 
Drach, Chazy, or some other clever young man who later made 
a name for himself. 

In 1911, Poincare did not select anybody for this special work. 
He was lecturing on cosmogony; he knew the theories to be too 
unreliable, and repeatedly emphasized that the theoretical ex-
planations offered by various authors were definitely inadequate. 
We did not know where the heat radiated by the sun came from. 
We did not understand how stars were built and how they died. 
There was too much missing from our knowledge. Sometimes, 
Poincare suddenly stopped talking and silently walked back and 
forth in front of the blackboard. Then he turned to the audience, 
brushed aside all his notes and started: " I just have a new idea. 
Let us try whether it works ... ." He would state his new point 
of view and start working on the blackboard, computing numerical 
values, and conclude: " T h i s is not much better than other 
theories; there is undoubtedly too much missing." This was the 
last complete series of lectures by Poincare, just a year before his 
untimely death. 

Do you think we are in a better situation now? We have cer-
tainly learned a great deal during the last fifty years. But we still 
are very far from understanding cosmogony. It remains a dream, 
a wonderful and evading dream. 

Here some reader may say: We must trust some well estab-
lished principles of symmetry in space and time, the principle of 
relativity, etc. Let us sketch now the relativity of the principle of 
relativity! This famous principle was first discovered in classical 
mechanics: The laws of motion, stated for a frame of reference at 
rest, remain exactly the same when the motions are observed from a frame 
of reference moving with a given constant velocity v. The reader may 
take notice of the fact that I speak of " frames of reference " 
instead of" sets of coordinates." There is a fundamental distinc-
tion to be made between the definitions, as we shall see in 
Chapter 4. A set of coordinates is a purely geometric definition; 
the coordinates have no mass, for the simple reason that geometry 
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completely ignores masses. A frame of reference must have a 
mass, and this mass must be assumed to be much greater than 
that of any object moving within the frame. 

For the moment, let us concentrate on the word " given." 
What do we mean by a given velocity? Who is giving us this velo-
city, and how? I become very suspicious whenever I hear the 
word " given." There is only one occasion when it has a definite 
meaning; this is in the statement of a problem given by an 
examiner to some helpless students. In this situation the velocity 
is supposed to be exactly the given velocity, with no possible error 
or discussion. But in real life, this never happens. If I observe an 
unknown moving object in the sky, nobody can give me its velo-
city. Whether it be a star or a flying saucer, I have to measure the 
velocity by some experimental device. I may use optical signals, 
which will be reflected from the unknown object, to measure the 
delays, the Doppler shifts, etc. From these measurements, I can 
compute the velocity, but I should always be aware of the fact 
that these very experiments always perturb the motion. The 
velocity after observation is not the same as before observation. 
Every experiment requires some coupling between the observer and the ob-
served object, and the object is not in the same state of motion after 
the observation has been made and the coupling removed. This 
is now a well-known fact, supported by many examples of quan-
tum theory. In the measurement of a velocity, we use light signals 
containing so many photons. When reflected these photons push 
back the reflecting object (recoil effect) and change its velocity. 

The given velocity is just a myth of our imagination. It is a traditional 
blunder, resulting from the illusion that " looking at something 
can do no harm." In the physics of the nineteenth century, such 
an assumption seemed obvious; it was taken for granted, without 
any discussion. Now we know better. The frame of reference moving 
with a given constant velocity does not exist and never did. What can 
be discussed is the problem of a heavy frame of reference, with such 
a large mass that the perturbation due to the measurement of the 
velocity is negligible; such a specification leads to many compli-
cations, as we shall see in Chapter 5. The old-fashioned principle 
of relativity is a dream; it represents only a limiting case, but may 
not, for instance, be used without much care when it comes to 
moving atoms, electrons, neutrons, photons, neutrinos, and all 
these new mysterious " particles " (we have no better word to 
qualify them) of very small masses. 
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Similar remarks apply to many principles recently put forward 
with most incomplete discussions of how the " symmetry," for 
instance, can actually be measured. 

These are just a few examples to show how scientists' view-
points have progressively changed, and how many new problems 
emerged, which even Einstein's genius was unable to foresee fifty 
or sixty years ago. 

We witnessed the invention of atomic clocks of incredible 
accuracy, whose physical properties differ very much from the 
clocks Einstein imagined. This will be discussed in some detail in 
Chapter 3. Let us mention here a real difficulty resulting from 
internationally adopted definitions. The unit of length is based 
on the wavelength of a spectral line of krypton-86 under carefully 
specified conditions with accuracy 108 and the unit of time is 
based on the frequency of a spectral line of cesium with accuracy 
1012. Hence, the same physical phenomenon, a spectral line, is used for 
two different definitions: length and time, and the velocity c of light 
remains undefined and looks arbitrary. It should be stated, once 
and for all, whether a spectral line should be used to define a 
frequency or a wavelength, but not both! 

The above definitions are supposed to be made on earth, where 
there is a certain gravity field; Einstein's relativity predicts some 
change in the units of length and time when measured in regions 
with different gravity fields. It also predicts a change in the 
velocity of light c. With the legal definitions of length and time 
it seems rather difficult to check experimentally such predictions. 
This raises a very real problem of metrology. The purpose of this 
monograph is to consider this as well as other questions arising 
since the formulation of relativity and quantum theories at the 
turn of the century. In Chapter 1 we will review the historical 
sequence of events which led to these theories. But let us consider 
first the development of scientific theories in general. 

We presented in SU a general discussion about the meaning 
of scientific theories, using information methods, and we empha-
sized the personal role of the scientist; his task starts with the 
selection of an experiment that can be practically isolated from 
the outside world and described completely, thus allowing the 
possibility of repeating the experiment in other laboratories and 
checking the results of the first observations. The scientist also 
uses his imagination for building a theory that might connect 
together a certain number of experimental facts. He may, with 
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the help of this theory, predict some new results that will or will 
not be checked by new experiments. If necessary, the theory will 
either be corrected or rebuilt in order to account for new empiri-
cal data. 

Scientific knowledge is based on empirical fact and theoretical 
interpretation. Both grow together step by step in a remarkable 
symbiosis, which was discussed in Chapters I I I and IV of SU. 
The role of human imagination in the theories was carefully 
scrutinized by Lindsay (1967) in a brilliant paper published in 
Physics Today. 

Science is a game, in which we pretend that things are not 
wholly what they seem, in order that we may make sense out 
of them in terms of mental processes peculiar to us as human 
beings .. . . Science is a method for the description, creation, 
and understanding of human experience. 

REFERENCES 
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Chapter 1 Quantum Theory 
and Relativity 

1 . Quantum Theory 

Both quantum theory and relativity originated at the turn of the 
century. Both are now considered basic to our present scientific 
thinking, but they offer completely opposite characters in the 
way they were built, and also in their historic development. A 
close comparison of these two theories is most interesting and we 
can learn much by scrutinizing their developments. 

We have already sketched the development of quantum theory 
(SU, Chapter IV, p . 41). It came to life in the year 1900 when 
Max Planck published his first paper on a theory of blackbody 
radiation. This paper started with a classical discussion of electro-
magnetic waves, but suddenly introduced the idea of quantized 
energy needed for a statistical discussion: The formula for black-
body radiation (isothermal radiation) compared favorably with 
experimental results, provided the quantum of energy is taken to 
be hv, i.e., proportional to the radiation frequency v, where h is 
Planck's constant. The first part of the paper relied on continuity 
(Maxwell's equation) but it ended with an irreducible discon-
tinuity. Planck's first theory is summarized by the equation: 

AE = hv 

E = nhv, n = 0, 1, 2, 3 . . . (integer) (1.1) 

Planck himself seems to have been very much disturbed by this 
strange duality in his theory. He attempted to rebuild it in a 
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different way and obtained a different result (the second theory): 

AE = hv 

E = {n+\)hv, /i + £ = i , !,f, i . . . (half-integer) (1.2) 

The change from integer to half-integer did not matter much for 
blackbody radiation at usual temperatures. The new feature, 
however, was of importance when temperature became very low, 
since it indicated the possible existence of a zero-point energy \hv. 
Observable quantities were similar in both theories, since zero-
point energy is actually almost impossible to observe. Planck was 
still dissatisfied with the strange mixture of continuity and dis-
continuity, but very soon the proof was given (by Poincare and 
Ehrenfest) that such a discontinuity of energy was absolutely 
needed for an interpretation of experimental data on blackbody 
radiation. There was no way out. 

The finite value of Planck's constant h and its physical meaning 
were very much in discussion. At the first Solvay Congress in 
Brussels (1911), Sommerfeld noted that h had the dimensions of 
" action " in mechanics and suggested quantization of action in 
some problems. The idea was of great theoretical interest, but the 
examples selected by Sommerfeld were not very convincing; how-
ever, at the same congress, Langevin showed that Sommerfeld's 
quantum of action gave a quantization of magnetism, called 
magneton, when applied to an electron trajectory. Langevin found 
in 1911 the quantity we now call " Bohr's magneton." He was 
only off by a factor 2π, due to an unknown numerical coefficient 
in Sommerfeld's assumption. This might be called the Sommer-
feld third quantum theory. 

The fourth theory was presented in Bohr's first paper on the 
hydrogen atom (1913). I was a student in Munich that year and 
happened to be in Sommerfeld's office while he was opening an 
issue of Philosophical Magazine', he glanced at it and told me: 
" There is a most important paper here, by N. Bohr. It will mark 
a date in theoretical physics." Soon after this Sommerfeld started 
using his own " quantum of action " to rebuild a consistent theory 
of Bohr's atom. 

This is how quantized mechanics (the fifth theory) was born, and 
why it progressed so fast. It was definitely Sommerfeld who dis-
covered the importance of the \ p dq action integrals, which paved 
the way for modern quantum theory. 
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We retraced the first five steps of quantum theory; but we 
cannot describe the explosive extension that followed: Experi-
mental results came thundering down, and each time the theory 
had to be adapted or partly rebuilt. Spin, Pauli's exclusion prin-
ciple, de Broglie waves and Schrödinger wave mechanics soon 
integrated with Born-Heisenberg's matrix computation, com-
mutation rules, Dirac's electron, etc. All this can be read in the 
successive editions of Sommerfeld's book (1919). We might count 
dozens and dozens of successive changes, and each time we would 
find the same pattern, described in the introduction. 

The familiar cycle: new experimental facts—theory rebuilt— 
observables being maintained but coupled with some new un-
observables—new predictions, leading to new experiments, etc. 
illustrates the splendid symbiosis of thinking and experimenting 
which results in an endless escalation of knowledge. 

This, in our opinion, represents the fundamental procedure of 
healthy scientific progress. Any halt in the development may 
mean a serious hidden obstacle that could necessitate a com-
pletely new theoretical scheme. 

Certainly. many more stages in the expansion of quan tum 
theories will follow. Everything now is based on quanta . Prob-
lems that scientists of my age painfully discussed in our younger 
times are now being taught in the first year of university physics. 

Many attempts at strict logical axiomatizations were proposed 
to please the theoreticians for a short time, only to be suddenly 
broken to pieces by some new discoveries. Dirac, von Neuman, 
and many others did their best to rule the flood and channel its 
waters, but the dams they erected were soon overrun. We are 
now waiting for some new bright ideas to solve the problem of 
hundreds of new " elementary particles," which may also be 
called " quantized waves," and this certainly will lead to many 
unexpected discoveries. 

2. Relativity 

The modern theory of relativity also got started with this century. 
When we look at this theory, we discover a very different picture 
not at all similar to quantum theory. First, we must draw a line 
of demarkation between " restricted relativity," as Einstein called 
it, and " general relativity." Restricted relativity is the strongest 
of the two branches; it rests upon a long history of physical and 
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astronomical observations, which were summarized in the defi-
nition of an inertial frame of reference. The whole problem is very 
clearly stated by Sommerfeld (1952) at the beginning of his book 
on mechanics. 

The laws of mechanics presuppose the existence of an inertial 
frame, an imaginary structure at rest, usually assumed to have its 
center on the sun with x9y, and z axes in the directions of known 
fixed stars. With respect to such a frame of reference, free moving 
particles move along straight lines with constant velocities when 
no external forces interfere. We immediately discover that any 
frame of reference moving with constant velocity with respect to 
the first one obtains similar properties, and we have a whole 
family of inertial frames. This is the principle of relativity in classical 
mechanics. 

Physicists later discovered some unexpected results, and ob-
served that this principle was also valid for all laws of physics. 
No physical experiment can detect a uniform translation of the laboratory 
(used as a frame of reference); but physical experiments per-
formed in a laboratory may detect an accelerated motion, a 
rotation for instance (Foucault's pendulum, Sagnac's optical ex-
periment, etc.). A great many experiments in electromagnetism, 
optics, and other fields proved the validity of this principle of 
restricted relativity. 

Einstein introduced the adjective " restricted," because he 
later tried to extend the principle to more general situations, but 
this extension was recently criticized in different countries by 
independent scientists who found many weak points in Einstein's 
assumptions. Many things happened since Einstein worked out 
his theory at the beginning of the century. Quan tum theories 
invaded all chapters of physics, including mechanics and optics. 
Some of Einstein's assumptions looked safe, but they are now open 
to discussion and must be reexamined very carefully. While 
quantum theory helped us to discover many new phenomena in 
physics, we still have very few experimental checks of general 
relativity; it is time to go back to the " brave old relativity " and 
revisit all its territory. Every physicist feels that the very few 
(altogether three) experimental checks are really a meager result 
for too much computation. General relativity is a splendid piece 
of mathematics built on quicksand and leading to more and more 
mathematics about cosmology (a typical science-fiction process). 
But let us return to restricted relativity. 
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In order to obtain the needed invariance of physical laws with 
respect to any linear change of frame of reference, it was necessary 
to modify the definition of such changes and to introduce a new 
transformation of space and time coordinates. This was done 
between 1895 and 1905 by Lorentz (see Sommerfeld, 1952, p . 13). 
The famous Lorentz transformation modifies x, y, z, and t in such 
a way that it keeps c, the velocity of light, unchanged. The law 
of addition of velocities makes c an impassable maximum. No 
velocity v can exceed c: 

v^c (1.3) 

This results in the curious fact that energy and mass become 
synonymous: 

E = mc* (1.4) 

Both relations (1.3) and (1.4) of course modify the usual laws of 
mechanics, but this is done in such a way that the laws of classical 
mechanics hold when velocities are very much smaller than c. 
This ensures a smooth junction of relativity with classical theory 
( S U , p . 4 4 ) . 

All preceding relations checked correctly with experiments and 
Eq. (1.4) became famous in connection with atomic transmuta-
tions and atomic bombs. The " first " or " restricted " relativity 
stands as a monumental discovery. 

It left, however, many unanswered questions, the most serious 
one being about gravitation. Newton had assumed that gravitation 
propagates with an infinite velocity, an assumption which goes 
back to Galileo and even then appeared unreasonable to his 
contemporaries. 

According to condition (1.3) we must admit that gravitation 
propagates with a velocity vg smaller than c or at most equal to c 

vg<c (1.5) 

Einstein assumed 

vg = c (1.6) 

and it seems that the scientific community adopted this assump-
tion as obvious. 

The assumption is very far from obvious, however, since there 
is absolutely no experimental measurement of vg; we shall discuss the 
problem in Chapter 3. We shall also discuss more completely the 
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relativity of relativity theory sketched at the end of the introduc-
tion (see Chapter 4). 
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Chapter 2 Some Problems about 
Restricted Relativity 

1. Relativity and Potential Energy 

Einstein's relation between mass and energy is universally known. 
Every scientist writes 

E = Mc* (2.1) 

but the role of potential energy is not always clearly stated. We 
must investigate this situation carefully and try to understand 
what sort of difficulties are raised by such a revision. (Brillouin, 
1964a,b; 1965.) 

Let us consider a physical body, which we assume to be a closed 
structure, with an isolating boundary letting no energy trespass. 
It contains a certain energy E0, that we may measure in a frame 
of reference where the body stays at rest. The internal energy may 
be chemical, mechanical, kinetic, or potential; it will change all 
the time from one type to another type; we state that this energy 
EQ yields a rest mass M0 according to Eq. (2.1). 

When the physical body is in motion with a constant velocity v, 
we obtain a new mass M, with an energy E, and a momentum p : 

EQ = Af0c2, E = Mc2, p = Mv 

M i iL_ ( 2·2» 
(1 - i / 2 / * a ) 1 / a 

The change from M0 to M accounts for the mass of kinetic energy. 
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The physical body may be moving in a static field of forces and 
obtain, at a certain instant of time, an external potential energy 
U. Everybody assumes the total energy to be represented by the 
formula 

Etot = Mc* + U (2.3) 

where U remains unchanged, despite the motion of the body at 
velocity v; this fact reveals that one completely ignores any possibility 
of mass connected with the external potential energy. If this external 
potential energy had any mass, this mass would somehow be set 
in motion by the displacement of the physical body, and this 
moving mass would obtain some kinetic energy. No provision for 
any such effect can be seen in Eq. (2.3). 

We are thus in a strange situation, where the internal potential 
energy obtains a mass, while the external potential energy does 
not. 

2. The Meaning of Potential Energy 
in Relativistic Theories 

The definition of potential energy plays a prominent role in classical 
mechanics, but when we turn to relativity, this quantity is high 
on the list of concepts needing reappraisal. The original classical 
definition cannot be maintained, since it is based on " absolute 
time " and " infinite velocity of propagation " for signals. Many 
other definitions are in trouble for similar reasons: the third 
principle of Newton (equal action and reaction at any distance) and 
the notion of center of masses, etc. 

How could we speak of equal action and reaction between the 
sun and the earth, for instance, when it takes about 8 min for a 
signal to propagate from one to the other? In 8 min the earth 
travels quite a distance, and the attraction of the sun is modified. 
If an explosion occurs on the sun, its action will be felt on the 
earth 8 min later, and the reaction on the sun will come back 
16 min later! The problem of the reliability of potential energy 
definitions is actually a very acute one. 

There are other difficulties raised by relativity in the definition 
of moment of momentum, or of moment of inertia, and more 
generally in the discussion of all problems involving rotations, that 
should be carefully reexamined. 

Let us concentrate on problems of potential energy. There must 
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be a way out of the trouble, because we know that relativity joins 
smoothly with classical mechanics when the following conditions are 
fulfilled: 

a. All velocities v must be very small compared to the velocity 
of light c: 

v «: c (2.4) 

(This condition involves using small potential energies.) 
b. Distances r must remain small, so that delays in the propa-

gation of signals may practically be considered as negligible: 

- < r (2.5) 
c 

where T is a characteristic time interval for the motion under 
consideration, e.g., its period. 

In the problem of sun and earth interaction, the first condition 
(a) is nearly fulfilled (except in Michelson's experiments), but the 
second condition (b) is not. 

What must now be done is to investigate carefully a type of 
definition that can be used for a relativistic quantity which could 
replace potential energy, and reduce to potential energy in 
classical mechanics. We shall then be in a position to examine 
the space distribution of the new quantity and of the correspond-
ing mass. 

Before we discuss this problem we must consider another diffi-
culty, resulting from traditional methods of classical mechanics. 
Many of these methods cannot be extended to relativity, and 
finally also had to be abandoned in quan tum theories. Classical 
mechanics, with its absolute time, can state and discuss problems 
with any number of particles (say: Ml9 M2, ... , Mn) located, at 
a certain instant t of absolute time, at r1? r2, ... , rw. The poten-
tial energy is supposed to be any function U(rv r2 , ... , r n ) , 
and the problem is discussed in a mathematical space with 3n 
dimensions. Most theorems of classical mechanics are stated in 
this very general way. 

Such a method is not applicable to relativistic problems, where 
each particle (coordinates x^y™ Zn) obtains its individual time 
tn in a given frame of reference; relativity is characterized by the 
use of a four-dimensional space-time. 
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The change in definitions is very serious and its consequences 
are many. For instance, let us consider a system of two particles 
interacting together: Shall we state that potential energy is 
located on the first particle? Should it be attributed to the second 
one? Or split between them? If energy means mass, where shall we 
locate the mass? This is a fundamental question which we have 
to discuss. 

The question has been ignored or evaded frequently, because 
it does not always appear clearly in all problems. One of the two 
bodies interacting may be very much heavier than the other one, 
hence almost motionless, e.g., the earth attracting Newton's 
apple! Newton carefully stated his third principle: The apple, 
too, is attracting the earth! But many theoreticians forgot about 
it: The earth does not move (so they said), it creates a steady field 
of forces, and the apple is moving in this " given " field. As a 
result, these theories would assume no mass corresponding to poten-
tial energy, and write the total energy as in Eq. (2.2). The flaw is, 
however, obvious, and this is why the present discussion is needed. 

3. The Importance of Fields in Einstein's 
Theories 

All these questions hang closely together; they are tightly inter-
related and have been considered by a great thinker like Einstein. 
He explained clearly that since action at a distance is forbidden, 
one should rely entirely on actions transmitted step by step by 
fields propagating through space. The importance of field theory 
was definitely brought into the foreground. The ideas launched 
by Faraday and Maxwell were completed by relativistic discus-
sions. Fields were assumed to have a real physical existence, even 
when they do not act on any moving particle and go on unnoticed. 
Such an assumption looks pretty much like metaphysics, but it 
plays a dominant role in relativistic problems. 

There is no longer any question of action and reaction at finite 
distances, but the law of equal action and reaction applies locally, 
at any given point xyzt in space-time. 

The field assumes a very complicated role: I t carries energy, mo-
mentum, Maxwell's tensions, etc., and we want to emphasize the 
fact that the field itself carries a mass. This is the situation which we 
intend to discuss, since its full significance has been partly over-
looked by many theoreticians of relativity. 
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Let us start with a simple problem on which there is general 
agreement. We consider a sphere of radius a, with a mass M0 and 
an electric charge Q, that is distributed on the sphere's surface. 
In a frame of reference at rest, this charge (^generates an electric 
field F at a distance r 

F - ^ r · (2.6) 

where r° denotes a unit vector in the r direction. This electric 
field obtains an energy density (ESGGS units) 

* · ι = j j - I F I2 = ^ (2.7) 
8 π Ö77T4 

According to the fundamental rule (2.1), this corresponds to a 
mass density 

1 0 2 

P m = _ i _ | F |2 = - * ~ - (2.8) 

The energy density (2.7) and mass density (2.8) can be integrated 
over the whole space, around the sphere a, and yield 

0 2 0 2 

Eel = ^ , M e l = ^ - (2.9) 
e l 2a e l 2 ^ 2 v ; 

where £"el is the total electric energy in the field, and Me\ repre-
sents the total mass in the field around the sphere. The sphere 
may have another mass M0 of internal origin and its global mass 
amounts to 

Mg = M 0 +Af e l (2.10) 

When we write such a formula, we take into account the fact that 
Eq. (2.8) indicates a very high concentration of mass in the im-
mediate neighborhood of the sphere, and we assume that this 
mass may (as a first approximation) be taken as located upon the 
sphere itself. 

4. Two Interacting Spheres 

Let us go on with electric problems that are better known than 
many other similar ones and can be used as typical examples. 
We now select a two-body problem, with two spheres of very 
small radius a, rest masses M0 and M' 0 , charges Q,and Q,', sup-
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/ 

posed at rest in a certain frame of reference', we call r0 the distance 
between them. Let us call P a point in space (Fig. 2.1) where we 
observe the resulting electric field 

F - ,T r " + ^- r ' ° <2·"> 

\ 
\ 
\ 

M o ^ t l \M'o 
0 ro 0' 

FIG. 2.1 

The electric energy density is now given by the formula 

* » = F | F i 2 = ^ r % 2 + % 2 + 2 ^ c o s ö l ^2·12) 
8 π 077 I r4 r4 rlrl J 

where Θ represents the angle between the vectors r and r ' . 
The mass density becomes 

--£-ώ[?-£*'£Η (213) 

In this remarkable formula, the first term obviously represents 
the contribution to the mass M0 of the first particle, while the 
second term contributes to the M\ mass of the second particle, 
but what is the meaning of the third term, with the QjQ cross product? 

In order to clarify this point, let us first consider the integral 
of the cross product in formula (2.12) for electric energy. We call 
Eint the third term, that represents interaction between Q,and Q,' 

?int = f" $mdT =~( (¥■¥') a 

4π J \ dx x By " dz 

(2.14) 
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where xyz are the coordinates of point P, while dr is a volume 
element in space and (F · F') is the scalar product. 

We introduce the static potential V for charge Q,', normalized 
by the usual condition V = 0 at infinity, 

V = % (2.15) 

Integrating by parts, we find 

£int = - ^ I V'(FX+FV +FZ) | + « +-L- | V (V · F)rfr I+-+ ' f r ( v · : 
- 0 0 477 J 

The integrated term is zero and in the integral we note 

( V - F ) = 4 ^ P e i (2.16) 

where pei is the electric density for charge Q,. The result is 

£int = V'd = QQ assuming a < r0 (2.17) 
ro 

hence we have the following theorem: 
The integrated interaction energy', tafo/z oz^r all space, yields the quan-

tity usually called "potential energy "for two charges Qand QJ, at rest 
in a certain frame of reference. 

This means also that the total mass due to the cross-product 
energy terms QQ represents the mass of potential energy and is 
actually distributed in the whole space 

M p o t = Q& (2.18) 
r0c

2 

For two point charges Q Ä ' at resi m a certain frame of reference, 
we have been able to replace the mathematical abstraction of 
potential energy by a physical model, where the energy is distri-
buted in space according to the field. 

If we now want to discuss a problem of moving charges, we 
have to follow a similar procedure and compute the energy den-
sity in the field of both interacting particles. Terms in Q ^ ' will 
yield directly the interaction energy, for any distance and any 
velocity. The energy distributed in space, according to the field, 
corresponds to distributed mass. 

Let us, for instance, consider a problem with one charge QJ at 
rest in a certain frame of reference, and the other mass moving 
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with a velocity v. The field of Q,' is the static field F ' of Eq. (2.6), 
but the field F of the moving charge Q îs represented by the well-
known relativistic formulas [see, e.g., Sommerfeld, 1952, p . 240, 
Eq. (14)]. 

Terms in QQ in the energy density may then be computed (in 
this special frame of reference) together with the corresponding 
mass distribution. 

5. Where Could the Mass of Potential Energy 
Be Localized? 

Let us consider a problem where conditions (2.4) and (2.5) are 
fulfilled and we can speak of potential energy. 

The mass of potential energy is actually distributed in the 
whole space, between and around the charges Q^and QJ. If, how-
ever, we look more closely into formula (2.13), we notice that 
the cross term (interaction) 

Pm, ,„t = ^ r 2 cos 0 (2.19) 

become very large on the charged spheres when either r = a or 
r' = a. This indicates a concentration of mass near the two 
charges with much smaller density at a distance. The concentra-
tion, however, is not so strong as in Eq. (2.8); it goes as r~2 

instead of r~4. Nevertheless, we may introduce a first approxi-
mation similar to the one used in Section 2.3 and state: For 
spheres of equal radii a <̂  r0, as a first approximation, the mass of poten-
tial energy can be considered as localized on the interacting charges QQ 
and split 50/50 between them. We rewrite Eq. (2.10) for the global 
masses in the following way: 

2v2 

(2.20) 

Μ', - Μ ' , + Μ ' β ΐ + 0 

The distribution of Eq. (2.19) is completely symmetrical in r 
and r' and this justifies the 50/50 split when boundaries are 
symmetrical too. 
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Some details, however, are worth discussing (Fig. 2.2). Formula 
(2.19) shows that the density of mass (and energy) obtains a 
certain sign at large distance, when Θ is small and cos Θ is nearly 
unity. The - or + sign at large distance is given by the sign of 

Sphere C 
0 = 77V2 
cos 0 = 0 

Q' 

FIG. 2.2 

the product QQ and is the same as the sign in Eq. (2.18). How-
ever, we must notice that the pm> i n t density (2.19) is zero on a 
sphere C of diameter QA'> where we have θ = π/2 and cos Θ = 0. 
Within the sphere C, the density pm> i n t has an opposite sign. 

Anyhow, the densities pm> int may have + or - signs, and 
(just as the potential energy itself) the mass of potential energy 
can be positive or negative. 

The new masses (2.20), computed for particles at rest should 
be a good first approximation when one of the particles moves at 
a low velocity v, and corrections should be only in v2/c2. 

6. Many Interacting Charges at Small Distances 
and Small Velocities 

We discussed in some detail the case of two interacting electric 
charges Q, and Q.'; t n e results can be generalized to dipoles, 
quadripoles, or multipoles interacting with an electric charge. 

Let us, for instance, consider a rigid structure at rest, holding 
a certain number of charges QJ, Q,", ... , Qjn) and acting upon 

c o s 0 > O 
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a free charge Q. This may, for example, correspond to the prob-
lem of a crystal lattice, with a free electron Q, moving through 
the lattice. The charges Q/, Q,", ··· , Q}n) are supposed to have 
equal radii a; they have electric interactions among themselves, 
and this interaction will be part of the total potential energy (and 
mass) of their rigid structure. The free charge Q^(also of radius a) 
interacts with any one of the Qjn) charges, and half of the corres-
ponding mass of interaction is localized on Q,, while the other 
half is on Q}n). Let us call U the potential energy of all these 
interactions: 

™ 0 0{j) 

u = Σ — > * < r> ( 2 · 2 1 ) /=i r. 

The mass of the free charge Q, interacting with the structure 
becomes 

MQ = M0 + Mei + U/2c* (2.22) 

while there is an additional U/2c2 mass on the rigid lattice. This 
is a straightforward generalization of Eq. (2.20). 

Let us now assume the charge Q to be moving with a small 
velocity v; then the total energy of particle Q^plus lattice is 

instead of (2.3). 
This can be rewritten in a slightly different way: 

_ M0 + Mel 

^ t 0 t ~ 71 -,2//.2\l/2 C + U + 
(1 -V2/C*) [^((ΓΓ^τ.-1)] (2·24) 

The last term within the brackets is the new term correspond-
ing to our theory, as shown directly by a comparison of (2.24), 
(2.3), and (2.10). 

In most practical applications this new term remains small, and 
Einstein's equation, (2.3), represents a good approximation. Our 
new correction might become of importance only for large values 
of the velocity v and of the potential energy U; but a large 
velocity v would require special treatment as noticed at the end 
of Section 2.4. According to the sign of U9 the correction may be 
positive or negative. In such discussions, one should always be-
ware of so-called potentials, that are usually defined up to an 



MANY INTERACTING CHARGES 23 

arbitrary constant (or function) and directly lead to " gauge " 
troubles. 

The assumption that the new mass distribution is primarily 
located on the electric field in the whole space satisfies the obli-
gation for relativistic transformations just as for the electromag-
netic field itself. The simplified model with additional mass 
localized on the particle must be considered only as a simplifying 
approximation, enabling us to establish the junction with classical 
problems. 

7. Unequal Particles; Role Played by the 
Geometry of the Boundary 

In Sections 2.4-2.6 we assumed that all the interacting particles 
were spheres of radius a, and this led directly to condition (2.20) 
with the 50/50 splitting of the additional mass of two interacting 
particles. 

Let us now discuss the more complex problem of two unequal 
particles. It is immediately obvious that the charges Q and QJ 
appear only by their product QQ. The symmetry of the field of 
interaction remains unsensitive to any difference between Q,and 
QJ. The masses M and M' do not seem to play any role either, 
but we shall come back to this point later. The field distribution 
is perfectly symmetrical with respect to the locations of the 
charges, but the boundary conditions depend on the radii a and a' of 
the spheres. We carefully specified that our first discussion required 

a = a' < r0 (2.25) 

If a is different from a', the whole symmetry is broken. 
At the same time, the masess M and M ' will be different since 

their electric parts are different. For instance, let us assume 
a > a'. We obtain, according to (2.9) 

a > a', Mei < Mei' (2.26) 
Since the domain of integration is dissymmetrical, we cannot 
predict the 50/50 splitting of the additional mass of potential 
energy. The field is weaker around particle a of smaller mass M; 
also we will be inclined to give less interaction mass to this 
particle, and to replace Eq. (2.20) by 

M,nt < £ 4 ' < MiBt (2-27) 
zrnc 
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Let us reexamine the discussion of Eq. (2.19) dealing with 
Fig. 2.2. The mass density p is just p i n t c~2 and takes opposite 
signs in different regions of space. This will create a field of 
gravitation corresponding to a gravity multipole, not to a single 
pole (single mass). These conditions may lead to a gravity poten-
tial of tensorial character, such as the one obtained by Einstein 
or by Dicke. If, instead of spherical particles, we consider charged 
particles of different shapes, the symmetry of the boundaries is 
completely destroyed and the 50/50 splitting of the interaction 
mass looks unreasonable. 

Let us consider, for instance, the problem of one spherical 
particle located inside a closed metallic box. This box may be 
connected to a van de Graaf generator and maintained at a high 
potential V. This raises a very real problem because the mass of 
the interaction energy may be many times greater than the mass 
of the particle. For an electron, we have 

m0c
2 & 500,000 eV 

However, we may choose 

V = 10 MV, U0 *t 20 m0c
2 

This is no longer a small correction; but here we have a complete 
dissymmetry. Let us start from the beginning when the box is 
empty; there is no charge inside, but a large charge Q, and a 
large electric field is spread around the outside of the box. The 
energy of this field will simply add a contribution to the initial 
mass of the box. 

Now we introduce one electron in the box. The field extending 
from the electron to the internal surface of the box is alone; there 
is no cross product in the electrical energy of the field, hence no 
cross energy and no interaction term. The field around the 
electron is the same as for a free electron in vacuum and the 
electrical mass of the electron is not perturbed. A surface charge 
density appears on the inner surface of the box, with a total 
charge exactly equal and opposite to that of the electron. A 
similar charge density (equal to one electron charge) appears on 
the outer surface of the box. The outside field is increased; its 
energy increases; its mass increases. Here there is no doubt that 
the whole mass of interaction is located on the box and practically 
no mass change can reach the electron inside. Complete dissym-
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metry achieves a situation where all the additional mass of poten-
tial energy is on the electrodes and apparatus with no contribution 
to the mass of the electron as shown by experiments. Under such 
conditions Eq. (2.3) is valid, but this result is not obvious and it 
may not be a general result. This proves also that the assumption 
of localized masses is a very crude approximation. A private dis-
cussion with Dicke was very helpful in clarifying this situation. 

8. Generalizations; Quantum Problems 

We must be cautious about the difficulty of defining a potential 
energy and take care not to confuse it with so-called potentials 
(electric or vector) commonly used in electromagnetism. These 
potentials represent a four-vector, and may depend on x,y> z, and 
t; they are defined up to an arbitrary function and they have no 
direct physical meaning. Only their derivatives have a physical 
meaning and constitute the field components. It would be mean-
ingless to connect the total energy of a system with the four-vector 
potentials. It is well known that these vector potentials lead to 
problems of " gauge invariance " and many complicated troubles. 

We assumed in the preceding discussion that we had to deal 
with a static problem (in some preferred frame of reference), where 
the potential energy at infinite distance could be taken as the 
zero of potential energy, thus eliminating even an arbitrary con-
stant in its definition. O u r potential energy was a function of 
x,y, and z, but not of time t, defined in the preferred frame of 
reference. 

Quan tum problems were discussed by Lamb, Bethe, Schwinger, 
and others, and their papers can be found in Schwinger's book 
entitled " Quan tum Electrodynamics " (1958). The method leads 
to corrections on the test mass of particles, called " mass renorm-
alization," and yields excellent numerical results. Quan tum 
effects include electrostatic potential energy and all sorts of spin 
effects. 

The present discussion proves that mass renormalization is not 
only needed in quantum theories, but that it must already be 
introduced in classical relativity, where it was completely over-
looked by the founders of relativity. Sommerfeld and Dirac were 
not aware of the difficulty, and their formulas must be very 
carefully revised. 
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9. Problems Arising at the Junction of 
Classical and Relativistic Mechanics 

The problem we discussed was a typical example of the diffi-
culties arising at the junction of two different theoretical models. 
Such problems were examined in a general way in SU, Chapters 
I I I , IV, and V, and the one we are discussing here is of special 
interest, since some of its peculiar characters seem to have been 
overlooked by the founders of relativity. 

The junction between relativity and classical mechanics can be 
considered from two different viewpoints: 

a. It was generally taken for granted that relativistic mechanics 
should reduce to classical mechanics when the velocity of light c 
could be made infinite. This may be mathematically correct for 
relativistic mechanics of particles, but this kind of reasoning is 
physically unsound. We may make c infinite in mechanics but we 
cannot assume anything similar in electromagnetism. The physi-
cist, whether he is an experimenter or a theoretician, cannot modify 
the velocity of light. This velocity c is a fundamental constant in 
physics. When we speak of" mechanics " in this section, it should 
be well specified that we are thinking only of " systems of par-
ticles." We include problems of atoms and molecules but no 
continuous medium with wave propagation. 

b. What a physicist can do is to investigate the properties of 
mechanical systems of particles when dimensions and velocities 
remain small [Eqs. (2.4) and (2.5)]. In such systems the delays 
for the propagation of signals may be so small that they become 
negligible, even with the finite light velocity c. 

Conditions (a) and (b) actually lead to very different conse-
quences. Let us, for instance, consider the mass-energy relation 
(E given) 

E = Mc2, M = E/c2 (2.28) 

In problem (a) the mass M goes to the limit zero when c is 
infinite. In problem (b), the mass M remains finite. 

Conditions (a) may satisfy a mathematician if he is interested 
only in mechanics of particles, but a physicist cannot accept them 
under any circumstances. 
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Conditions (b) have a real physical meaning, and exhibit 
another serious advantage. They are consistent with low fre-
quencies v, hence very small quanta hv; when the energy E of the 
system is large in comparison to Av, we really obtain classical 
mechanics, where neither quanta nor relativity can play any 
serious role. 

The definition of potential energy in classical mechanics is based 
on the assumption that delays remain negligible for the propaga-
tion of any signals. Such an assumption is consistent with either 
condition (a) or (b). In relativistic mechanics, delays may become 
large, and the original definition is inapplicable. This difficulty 
was overcome [Eqs. (2.4) and (2.5)] when it was proved that this 
type of energy should no more be considered as " potential," but 
became very much real, and could easily be recognized in the 
field of interacting particles. The proof was given for electric 
fields, but it obviously can be extended to most other fields. 

The duality encountered in conditions (a) and (b) of this 
section is much deeper than appears at first sight. We actually 
have to deal with two different brands of special relativism: 

a. Special relativity applied to systems of particles (where the mass-
energy relation (2.1) is used only for kinetic energy, while potential 
energy obtains no mass at al l) : In the applications of this (a) 
theory, most authors use " given scalar and vector potentials V 
and A " without specifying how these potentials have come into 
being. We have discussed these problems in Section 8. 

b. Special relativity in electromagnetism: Here we have a much 
more comprehensive treatment, very carefully specified by Ein-
stein and others. The mass-energy relation (2.1) applies for any 
kind of energy and all equations are consistent with a finite value 
of c. The so-called potential energy of mechanics can be dis-
covered in the energy of the electric field distributed in all space, 
around electric charges, and this is enough to prove that it must 
be given a mass, but it does not tell us where to localize this mass. 

Another question is unavoidable: In classical mechanics, the 
mass is always positive. Energy, on the contrary, as soon as we 
have defined the zero of energy, can be either positive or negative. 
In classical mechanics, the choice of the zero of energy is of no 
great importance; but in relativity, the absolute value of the 
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energy does play a direct role. It is absolutely needed in our 
energy-mass relation (2.1). We must admit the possibility of 
negative masses, which correspond to negative energies. 
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Chapter 3 Gravitation and Relativity 
Quantized Atomic Clocks 

1. How Does Gravitation Propagate? 

We raised the question of how gravitation propagates at the end 
of Chapter 1, and we noticed that only one thing was certain: 
Gravitation must propagate with a velocity never exceeding c: 

vg<c (3.1) 

while Einstein simply assumed, without any experimental proof, 
that 

vg = c (3.2) 

This requires an explanation. 
Einstein wanted to reduce all physics to pure geometry; he 

thought that a conveniently curved space-time universe would 
provide an explanation for all physical laws from electromagnetism 
to gravitation. This was his avowed aim and he worked toward 
this goal for half of his life. In order to achieve this goal, he could 
not introduce two different velocities vg and c in his theory. 

But the goal was never reached. Einstein managed to inter-
connect curved geometry and gravitation in a brilliant way, but 
his unitary theory, as he called it, was never achieved. Many attempts 
did not succeed, either because of a lack of generality or an 
excess of generality that left too many unknown arbitrary condi-
tions ; hence it was impossible to unite this geometric theory with 
electromagnetism. 
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Very few physicists now believe in the possibility of building 
such a unified theory. If this prejudicial assumption is rejected, 
there is no reason to maintain condition (3.2) and we are left 
with the inequality (3.1) until experiments yield the much 
awaited answer. 

Has experiment given any such answer? We are very much 
disturbed to say bluntly: No! 

What is worse, we have learned that empty space is propa-
gating all sorts of other waves, even in " perfect " vacuum: de 
Broglie and Schrödinger waves are moving around with all sorts 
of velocities. We do not have just one velocity c but an almost 
infinite number of possible velocities. How can we guess which 
one of these velocities might correspond to the propagation of 
gravitation? We may imagine: 

a. Gravity propagated by actual waves with velocity vg ^ c, 
provided (Laplace, Le Verrier) this velocity is high enough not 
to disturb the motions in the solar system. These motions were 
computed for vg infinite, and too small a value of vg might signi-
ficantly modify the interaction between planets. 

b. Instead of actual waves, we may have gravitation spreading 
around according to a diffusion equation. Equations for heat pro-
pagation or diffusion contain a term in djdt instead of the 32/3i2 

of actual waves. It is known that such equations progress initially 
with very high (even infinite) velocity; this anomaly, of course, 
should be corrected in order to preserve relativity conditions, but 
otherwise it seems difficult to rule out a possibility of diffusion 
equation for gravitation. 

c. We may even think of de Broglie or Schrödinger waves\ It is 
hard to see why the ψ waves could not be responsible for the 
propagation of gravity. Each particle has its ψ wave, and its 
mass makes it an emitter of gravity waves: Why not assume that 
the φ waves propagate gravity? It may look strange, but since 
we know absolutely nothing of gravity waves, it seems difficult to 
rule out such an assumption. 

d. We may also assume, instead of waves, an emission of 
" gravitons " with unknown velocities vg\ 

Einstein may be right, and I am personally inclined to think 
he made the correct choice, but we have no experimental proof. 
Half a century has elapsed since Einstein formulated his assump-
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tion—Fifty years, during which a great many experimenters 
worked hard at the problem and were unable to design any 
experimental measurement of this velocity. The situation is really 
very disturbing. 

2. Gravitation and General Relativity 

When it comes to " general relativity," many new difficulties 
should not be overlooked, and the experimental meaning of the 
theory is far from clear. Bridgman (1955) wrote: " Einstein did 
not carry over into his general relativity theory the lessons and 
insights which he himself had taught us in his special theory." 

Operational analysis was first applied by Einstein (1905) in 
his famous discussions about the meaning of length and time 
measurements for two frames of reference in uniform motion 
relative to one another. This was the basis of special relativity. 
But when he attacked general relativity, Einstein did not follow 
a similar procedure; he attempted to guess how to introduce 
gravity laws in relativity and to obtain a finite velocity of propa-
gation for gravity forces. Some examples of operational discussion 
were first used to suggest the equivalence of gravitation and acceler-
ation fields, but later Einstein introduced a very heavy mathe-
matical structure that goes much beyond any physical need. And 
the experimental proofs of the theory are very few. Similar re-
marks were presented by Dicke (1967). 

The role played by arbitrary " frames of reference," by " rigid 
yardsticks," or " exactly similar clocks " is extremely confusing. 
Here again, let us note our agreement with Bridgman (1955, pp. 
319 passim) whose discussion can be used as a program for future 
research. A painful and complete reappraisal is absolutely needed. 

3. Atomic Clocks that Einstein 
Could Not Foresee 

Let us start with an obvious weak point: the lack of definition of 
ideal clocks. Such a definition was impossible at the beginning of 
the century, before quantum theory and Bohr's atom were dis-
covered. We now have a definition, based on Bohr's (1913) 
second condition: 

AE = hv (3.3) 
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relating the frequency v (measured in a frame of reference where 
the atom is at rest) to the energy transition E in the atom. Next 
to this relation we rewrite the mass-energy relation: 

AE = A(mc2) (3.4) 

Energy, mass, and frequency are just one physical entity. A per-
fect clock is assumed to be stabilized on the frequency v, for which 
we shall select, according to international agreements, the most 
stable atom structure we know from experiment, an atom of 
cesium. The special spectral line to be used and the conditions of 
observation have been very carefully specified. This clock essen-
tially represents a frequency standard. One may use frequency 
demultiplication techniques to produce subharmonics of lower 
frequencies. This is done by amplifying devices using lasers, in 
connection with nonlinear structures. The multiplication or de-
multiplication of frequency by electronic devices plays a role 
similar to the cogwheels of old-fashioned clocks. These technical 
structures were first invented for low frequencies and had been 
used originally for comparing low frequencies of mechanical 
devices with high frequencies of vibrating piezoelectric crystals. 
It was then discovered that a low frequency vibrator could be 
" locked in " with a quartz oscillator vibrating on the frequency 
of a very high harmonic of the mechanical vibrator. From the 
quartz vibrator, the method was progressively extended to higher 
frequencies, first in the low infrared, then to optical frequencies 
and finally to the beginning of the ultraviolet region. 

Officially, it is stated that the reliability of the cesium clock 
reaches 1011, that is an error of one second in thirty centuries, but 
it seems probable that the accuracy might be improved up to 
nearly 1013 (a millisecond per century). 

A much higher accuracy is obtained with the Mössbauer effect, 
an emission of y-rays from an atom maintained at rest in a solid 
crystal. This was the frequency standard used by Pound in his 
wonderful experiments at Harvard (1959-1965), with Snider and 
other co-workers (see Pound and Snider, 1965). The atom kept at 
rest in a heavy crystal may emit y-rays without any recoil effect 
and the accuracy of these rays is 101β, at least. This, however, 
cannot be connected at present with atomic clocks at atomic 
frequencies because we do not know yet how to build lasers and 
frequency changers from ultraviolet up to y-rays. This is still a 
formidable obstacle but it may be hoped that technical improve-
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ments will enable us to make the connection in the near future 
and to build Mössbauer clocks with a precision of 1016 (a microsecond 
error per century). 

Why did Pound need a frequency standard of such incredible 
accuracy? He wanted to check one of the predictions of Einstein's 
general relativity, the so-called gravity red shift. This effect was 
verified with an accuracy of 1 % for the very small variation of 
gravity from the bottom to the top of a tower only 22 meters high, 
and this success was hailed as a wonderful check of Einstein's 
theory. We shall discuss the matter in a later section and show 
that another explanation can be put forward. The prediction was 
perfectly correct, but it can be interpreted differently. The Möss-
bauer effect is also an excellent example of a requirement that is 
usually ignored: A frame of reference must be very heavy in 
order to remain at rest during a physical experiment. This im-
portant question is discussed in Chapter 4. 

In the general discussions of Einstein and Minkowski variables 
of time which are arbitrarily defined under a great variety of 
conditions are considered. Let us specify the meaning of an atomic 
clock: It measures the proper time in a laboratory where the atomic 
clock is at rest. 

4. Atomic Clocks Are Not 
Einstein's Clocks 

The great importance of the definition of atomic clocks is due not 
only to their fantastic accuracy (the highest ever recorded in 
physics), but also to the fact that these clocks build a bridge 
between relativity and quantum theory. The definition gives a 
physical basis for any discussion of the behavior of clocks under all 
sorts of perturbations. Einstein attempted to guess how clocks 
might depend on gravity. We shall be able to discuss the problem 
from general rules of quantum theory. 

We remark first that the atomic clock yields a very precise 
definition of one certain frequency. It represents a. frequency standard. 
Einstein's clocks were supposed to emit extremely short signals 
and to measure accurately time intervals between signals emitted 
and received. In a word, an Einstein clock was a radar system, and 
its requirements were thus very different from those of a 
frequency standard. It is well known that in order to emit a very 
short pulse it is necessary to use a very wide band of frequencies, 
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not just one frequency. Requirements for the precise emission of 
an actual pulse are much more stringent and much more com-
plicated than those for maintaining a strict frequency standard. 

Let us now reexamine our quantum and relativity conditions 
(3.3) and (3.4). They represent the fundamental basis of all physical 
sciences. We will not pretend to explain these relations. They are 
beyond our comprehension. No theory (at least at present) is able 
to tell us why and how such relations may be understood. These 
identities 

energy = mass = frequency 

, κ (3·5 ) 

with their two numerical constants c and Λ, are the summary of 
all the laws of physics and cannot be derived from any present 
theory or model. It is the point of departure, not the result of 
our thinking. The mystery of this trinity is still complete. 

Bohr made two fundamental assumptions in his famous paper 
on the hydrogen atom (1913): 

1. He stated some conditions defining stable energy levels. 
2. He stated condition (3.3) for the frequency v emitted or 

absorbed at a transition from one energy level to another. 

This second Bohr condition survived unchanged through all 
the turmoil of fifty-five years of fantastic scientific discoveries. It 
is no use to summarize again this incredible period in the history 
of science, but one may recommend to the reader a most remark-
able paper by Weisskopf (1968). Let us emphasize that Bohr's 
condition (1) for stable energy levels has been modified hundreds 
of times since its invention. It still has to be readapted almost 
every year to new experimental discoveries, but all the funda-
mental laws obtained up to now agree on the following rules: 

1. There are stable energy levels at all stages of physics although 
stability criterion may change, and the stability itself may be 
of unknown duration. 

2. Bohr's condition (3.3) always gives the frequency of emitted 
or absorbed radiation. 

Condition (1) is so important that we must discuss it right away 
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and quote parts of Weisskopf's essay. This author reminds us of 
the existence of three stages in spectroscopy: 

i. Atomic and molecular spectroscopy, with frequencies up to 
X-rays (also called electron spectroscopy) 

ii. Nuclear spectroscopy including y-rays and radioactivity 
iii. Energies of excited particles discovered with powerful 

accelerators or cosmic rays 

All three stages yield systems of stable energy levels. Transition 
from one energy level to another may correspond to the emission 
of one particle of total energy ΔΕ (rest mass M0 plus kinetic 
energy) or to an emission of photons or neutrinos with zero rest 
mass. 

Let us illustrate these statements with some figures borrowed 
from Weisskopf s brilliant paper. Figure 3.1 represents the energy 
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FIG. 3.1 Atomic and nuclear spectra of sodium are similar in character. But 
the atomic spectrum {left) can be plotted on a scale whose units are 
electron volts, whereas the spectrum of nuclear states {right) requires a 
scale whose units are larger by a factor of 100,000. Based on a figure from 
V. F. Weisskopf, " The Three Spectroscopies." Copyright © May 1968 by 
Scientific American, Inc. All rights reserved. 
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levels of sodium for electron states (on the left) and for nuclear 
states (on the right). What is striking, and was actually un-
expected, is the fact that in both cases we discover sharp energy 
levels, and that transitions from one energy level to another yield 
a characteristic frequency of the atom. Electron states were cal-
culated with quantum theory of outer electrons, while the nuclear 
states result from quantization of proton and neutron masses 
within the nucleus; the latter instance is a much more difficult 
theoretical problem. Nevertheless, we obtain sets of discrete energy 
levels of similar characters, and this is the point to emphasize in 
connection with our discussion on atomic clocks. 

The extraordinary wealth of information included in such dia-
grams can be seen in Fig. 3.2, where nuclear energy levels for 
boron-10 are represented and a number of transition lines have 
been drawn (more than thirty of them), corresponding to high-
energy photons emitted. 

In addition to these diagrams referring to atomic spectroscopes 
(electron states) or nuclear spectroscopy, we have in Fig. 3.3 a 
very typical diagram of excited states obtained for high energy 
particles created in powerful accelerators. Here again, we must 
admire the appearance of well-defined energy levels and the great 
variety of transitions experimentally observed. This is a remark-
able example of quantum classification, but for the moment we 
do not have any complete theoretical scheme to explain these 
extraordinary levels. The reader is referred to Weisskopf's paper 
for more information. 

Let us conclude: Discrete and well-defined energy levels are the 
universal rule in atomic, subatomic, and even fundamental par-
ticle levels. The explanation of these energy levels and their 
theoretical interpretation are not yet completed. 

FIG. 3.2 Nuclear Spectrum of boron-10 shows the principal transitions 
(vertical lines) in which high-energy photons are emitted. The first digit 
at the right of each quantum state is the spin angular momentum, the next 
symbol ( + or- ) is the parity, the second digit is the isotopic spin /. Values 
in parentheses are uncertain. Gray bands indicate levels that are particu-
larly broad. The figure follows one published by Thomas Lauritsen of the 
California Institute of Technology and Fay Ajzenberg-Selove of Haverford 
College. Based on a figure from V. F. Weisskopf, " The Three Spectro-
scopies." Copyright © May 1968 by Scientific American, Inc. All rights 
reserved. 
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FIG. 3.3 Baryon Spectrum is composed of the nucleon (P, N) and its various 
excited states. The states are arranged in columns according to their multi-
plicity and strangeness. The letter / denotes isotopic spin; the multiplicity is 
given by 2 / + 1 . Strangeness is an intrinsic quantum property. In the sub-
nuclear spectrum of the baryon the ground state is taken to be the mass 
energy of the proton, 0-938 GeV. The number to the left of each state in-
dicates spin angular momentum and parity ( + o r - ) . The symbol to the 
right is the name of the state. The quanta emitted in certain transitions are 
shown in the key. Photon emissions are omitted; theygenerallylink the same 
states linked by pions if there is no change in charge. Dashed lines indicate 
transitions that are mediated by weak interactions: lepton pairs or weak pion 
emissions. Transitions go from every member of a multiplet to every member 
of another, but for simplicity only one such transition is shown for each pair 
of states. The masses of pions and kaons appear at the right. The states in 
the octet and decuplet exhibit certain internal symmetries. Each baryon state 
shown here also exists in an antimatter state, so that there is a similar spec-
trum of antibaryons. Based on a figure from V. F. Weisskopf," The Three 
Spectroscopies." Copyright © May 1968 by Scientific American, Inc. All 
rights reserved. 



ACCURACY A N D RELIABILITY 39 

5. Accuracy and Reliability of Quantized 
Atomic Clocks 

Atomic clocks based on Mössbauer's y-rays have not yet been 
built, but they will eventually come into existence, because they 
offer the possibility of highest possible accuracy. 

Atomic clocks using the best optical spectral lines are able to 
yield an accuracy keeping errors below 10- 1 2 or 10~13. This means 
errors smaller than a millisecond per century. 

Mössbauer's y-rays, as used by Pound, reach much further; 
errors are less than 10~16 meters or a split microsecond per century. 
In order to build a clock using these extremely fine lines, a great 
many technical difficulties would have to be overcome: First, a 
whole set of frequency multipliers or demultipliers covering the 
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FIG. 3.4 Long-baseline interferometer uses two radio telescopes thousands 
of kilometers apart. Magnetic tape recordings synchronized by atomic 
clocks are correlated by computer to show interference fringes. [Reprinted 
from R. H. Dicke, Physics Today, November 1967, 20, page 69.] 
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range from optical frequencies to y-rays would have to be de-
veloped. This would mean a complete set of lasers and of non-
linear optical devices which do not extend beyond the ultraviolet 
at present. Let us hope that this extension will be realized without 
too much delay. It would enable us to perform many important 
experiments that would tell us definitely what to think of 
relativity! 

The present clocks based on optical frequencies already display 
a remarkable accuracy. Let us consider, for instance, some prob-
lems of radio astronomy, and look at Fig. 3.4. Hydroxyl radicals 
(OH) from distant stars are found to emit radiation near 1665 
MHz under strange conditions that puzzle astronomers. These 
rays are emitted from some areas near very hot stars, called HI I 
regions, where the hydrogen is almost completely ionized. These 
regions are close to the galactic equator. There are four O H lines, 
observed in absorption and emission, and arising from hyperfine 
splitting of rotational levels. A curious feature is that the relative 
intensities of the four components are not in agreement with 
quantum theory. From Doppler effects, one observes that the 
O H groups are moving toward the center of the galaxy at about 
40 km/sec. In contrast, H atoms are moving away at velocities of 
50 km/sec. The physical size of the emitters is so small that it 
requires very long baseline interferometers, using two radio tele-
scopes at a distance of many thousands of kilometers, from 
California to Norway. It is impossible to interconnect directly 
those stations, but they may be controlled and synchronized by 
two atomic clocks, and records on magnetic tapes can be com-
pared by computer to show interference fringes. This is an extra-
ordinary achievement and proves the splendid reliability of 
atomic clocks. 
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Chapter 4 A Badly Needed Distinction 
between Mathematical Sets of 
Coordinates and Physical Frames 
of Reference 

1 . Introduction: The Opinions of 
Bohr and Poincare 

Experimental science started with classical mechanics. We still 
draw from it major parts of our ways of thinking and of our defi-
nitions, and we use its language to express the results of our 
experiments, since these experiments are all conducted with 
laboratory instruments built on a human scale. 

Let us quote here a very clear stand taken by Bohr (1958a) on 
the subject. 

The main point is to recognize that the description of experi-
mental instruments, and the results of the observations, have 
to be expressed in the usual language of physical terminology 
along with its usual refinements. This is a simple, logical 
necessity, for the word " experiment " means only one process 
of which we can communicate to others what we have done and 
what we have learned. 

Experimental equipment is built of strong and rigid material, 
heavy enough so that its position and speed can be determined in 
an absolutely classical manner without any possible intervention 
of the uncertainty principle of Bohr and Heisenberg. 

In other papers Bohr (1958b) very clearly explains this point 
of view, which leads him to a presentation of his ideas of" corres-
pondence " and " complementarity." 

Without considering again these classical discussions, we would 
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like to explicitly retain Bohr's affirmation: The yardsticks with 
which we measure distances and the clocks with which we measure 
time must have a high mass in order to remain unaffected by 
quantum conditions of uncertainty. 

This essential remark had been overlooked by the founders of 
classical mechanics and by Einstein in his relativity theories; it 
will be necessary to closely reexamine its consequences in these 
various doctrines. 

In one of his justly famous " little red books," Poincare (1902) 
discusses the bases of mechanics: 

The English teach Mechanics as a experimental science. On 
the continent it is always presented more or less as a deductive 
science and a priori. The English are right, needless to say 

On the other hand, if the principles of Mechanics have no 
other sources than experiments, they are therefore, only 
approximate and temporary. 

New experiments may lead us some day to modify or even 
abandon them. 

Poincare insists that the scientist should use, instead of arbitrary 
definitions, some conventions that are a resume of empirical facts, 
and he states: 

Conventions, yes; arbitrary ones, no. They would be arbi-
trary if we lost sight of the experiments which led the founders 
of science to their adoption. 

An identical point of view is expressed by Sommerfeld (1952). 
Let us remember the warning about science's historical evolu-

tion and the negation of axioms or postulates given a priori. 
To state an axiom is a logician's method, quite foreign to 

experimental science. Experimental science proceeds from em-
pirical results, which may be codified, perhaps a little arbitrarily, 
in order to formulate working assumptions; these assumptions 
can be modified, if required, by experiment. 

In any case it would be particularly naive to believe in their 
universal validity. These hypotheses (called " laws " or even 
" principles ") apply only within certain limits, within a certain 
domain; the boundaries of this domain will be revealed to us by 
later experiments. (See Part I of SU.) 
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2. Classical Geometry, Kinetics, 
Classical Dynamics 

In classical mechanics it is natural to start with statics, which 
represents a branch of geometry. Forces are treated as vectors, 
and neither movements nor masses are mentioned; applications 
are very numerous in the construction of bridges and in archi-
tecture. Then comes kinetics, where notions of time and space 
geometry intermingle: study of trajectories, description of motions 
(without trying to predict these motions). 

Kinetics borrows the usual abstractions of classical geometry: 
points without dimension, infinitely thin curves, areas without 
thickness, etc. Curves are at one moment infinitely rigid, im-
possible to put out of shape, and then extremely flexible. 

These methods (geometry plus time) enable us to define speeds, 
accelerations, changes in sets of coordinates, etc. 

In classical mechanics " absolute " time is a fundamental 
assumption; in special relativity kinetics is modified by the intro-
duction of relative times. 

We note an essential point: Kinetics knows no notions of mass 
or force. Mass and force appear only in dynamics. 

Laws of dynamics go back to Newton. For a brief but pene-
trating discussion, we refer the reader to the book on mechanics 
by Sommerfeld (1952, pp. 3-6). 

Let us recall the three principles of dynamics: 

1. Uniform and rectilinear motion in the absence of any out-
side force. 

2. Definition of the quantity of motion (or momentum) that 
an outside force f may modify: 

p = mv, p = f 

3. Equality between action and reaction. 

The frequently quoted third principle is often given only lip 
service and later ignored. 

The laws of motion are not sufficient to specify the precise tra-
jectory of a material point. To complete the problem, we need to 
give (or rather measure) initial conditions. The mathematician 
generally forgets to mention this point in a discussion of the 
principles. We have emphasized in Chapters VI and V I I of SU 
the facts that : 
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a. The laws of motion are reversible, and unsensitive to a 
reversal in the sign of time. 

b . Initial conditions are irreversible because in reversing time, 
we change the sign of speed. 

Consequently, rational mechanics is, as a whole, irreversible. 

3. Frames of Reference in Classical Mechanics 

Let us approach this thorny subject. It is customary to speak very 
little of it. Most authors keep kinetic and geometric definitions 
with all their unreal idealization, and get immediately busy with 
acceptable transformations: axes at rest, axes with a uniform 
motion, and relativity in classical mechanics or according to 
Einstein (see, for instance, Sommerfeld, 1952, pp. 9-16). In the 
course of the discussion one ignores the third principle of Newton, 
and one forgets as well the initial conditions. 

Let us study this a little closer. To launch a projectile we need 
a machine: a crossbow, a musket, or a gun. This machine is tied 
to the frame of reference. It sustains a recoil and the frame of 
reference of no mass (ideal of geometricians) flies away! What we 
need is a motionless and stable frame of reference. It is necessary 
to provide it with an infinite mass. Thus, even in classical mech-
anics, we discover the importance of Bohr's remarks quoted in 
the first section. 

In a discussion of classical relativity one compares two frames 
of reference, S1 and S2, with a certain relative speed v. The initial 
speeds of the projectile are vx and {vx - v) = v2. The recoils sus-
tained by the two frames at the moment of launching are different. 
The relative speed v is modified, therefore, if the two frames have 
finite masses, otherwise relativity breaks down. Instead of a 
launching machine, we can use a rocket; then the problems are 
more involved, since we have a projectile that splits into two 
fragments thrown right and left. 

Let us go one step further in this discussion: We assumed that 
we were dealing with two frames of reference, Sx and S2, with a 
" given " relative speed v. Let us remember that nothing is 
" given " in a scientific investigation, everything must be measured. 
Only in a problem stated for an examination are certain quanti-
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ties given by the teacher. How can we actually measure the velocity 
v? We build a laboratory on the first frame of reference St and 
send some signals, optical signals for instance, to the S2 frame. 
We measure the delay or the change of frequency in the Doppler 
effect, and we compute the velocity v from these observations. In 
the past century it was taken for granted that these measurements 
could be made without modifying anything in the moving systems 
Now we know that a photon hv has a mass hvjc2 and a momentum 
hvjc. While emitting a photon, our laboratory on Sx feels the recoil, 
and when this photon strikes on system S2 and is reflected back, 
there is a recoil on S2. 

When the photon strikes back on Sly it perturbs again the state 
of motion of Sv The relative velocity v of S2 with respect to S1 is 
modified by the measurements unless both frames of reference 
have very high masses M1 and M2. Theoretically the masses 
should be infinite, but it is sufficient to assume that they are 
enormously greater than the mass hvjc2 of the photons used in 
the measurement. 

The preceding discussion is only a special example of the Bohr-
Heisenberg uncertainty relations and of the general remark that 
every experimental measurement means a perturbation. We shall 
find another example of these problems when we discuss the 
Doppler effect in Chapter 6. 

Let us conclude: The usual statement of the relativity principle 
requires that frames of reference be extremely heavy. 

Let us examine another role played by the third principle: A 
field of forces is defined, and its potential calculated (Sommerfeld, 
1952, pp. 17-24). The force is given as a function of the coordi-
nates x,y, z, and represents the action upon the projectile. But 
where is the reaction? Obviously, on the frame of reference that 
supplies the coordinates x,y, z. This frame must remain at rest: 
infinite mass! 

Without clearly emphasizing this underlying assumption, Som-
merfeld immediately speaks of the earth's gravitational field, the 
earth being motionless and without rotation—here is this practi-
cally infinite mass we were looking for. 

Let us sum u p : A frame of reference does not constitute a piece 
of unreal geometry anymore; it is a heavy laboratory, built on a 
rigid body of tremendous mass, as compared to masses in motion. 
Insufficient masses yield incomplete steadfastness—Here appear 
the effects of tides, with easily visiole action and reaction. 
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We will be told: You are discovering the moon! No! We are 
only discovering that the moon should not be ignored in one 
chapter and correctly mentioned in another. 

The use of accelerated frames of reference strengthens our 
arguments. What is the meaning of a frame S2 in uniform rotation 
with respect to a motionless frame Sx? To give it a physical mean-
ing, we have to see it as a very heavy wheel, a flywheel of high 
inertia, which carries away together the observer and the moving 
instrument under observation (both very light). If this condition 
is not fulfilled, any displacement of a mass m within the rotating 
frame modifies the moment of inertia of this frame and provokes 
a change in the speed of rotation ω. The flywheel must have an 
infinite .moment of inertia so that we can consider ω as a constant 
when the observer and the moving instrument are arbitrarily dis-
placed. The action (upon the moving instrument) is equal to the 
reaction (upon the frame of reference). The effect of this reaction 
can be ignored only if the mass of the frame is infinite. 

These conditions are, moreover, realized in a laboratory on 
earth. The situation in an accelerated frame of reference is about 
the same as that observed in gravitation. A weighty object, ob-
served on the earth, is placed into a field of gravitation which is 
in superposition with the effects of rotation. The action (upon the 
apple of Newton or upon our projectile) is equal to the reaction 
on earth. 

4. Actions and Reactions in Relativity 

In classical mechanics, all these effects are supposed to be trans-
mitted instantaneously at any distance. In relativity, we require 
a transmission speed inferior to or equal to that of light c. 

Here we must be very careful! It seems reasonable to assume 
that in a vacuum the propagation of gravitation follows a general, 
universal law. But what is to be thought of the propagation of a 
rotation? This is essentially a problem of the elasticity of the fly-
wheel. When we set the flywheel in motion by applying a couple 
upon its axis, it first causes an elastic deformation in the steel of 
the flywheel. This deformation, first localized near the center, 
propagates progressively toward the periphery. It does not seem 
reasonable, nor justified, to imagine further any mechanism of 
universal propagation, as is the case for gravitation in a vacuum. 
Velocities of propagation for elastic waves that are very much 
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inferior to c are the only ones to be considered. We cannot see 
much sense in talking of axes rotating in a vacuum. An inter-
stellar neutral projectile does not feel the rotation of the earth, nor 
that of the sun, nor that of faraway stars.* Planets do not sense 
the rotation of the sun. 

Einstein bases his general relativity on an equivalence principle: 
Gravitation and systems of rotating axes should be exactly of the 
same nature. This point of view does not seem justified. There 
exist similarities between these two sorts of phenomena. But there 
are also great differences. 

When a landslide occurs inside the earth, it brings about elastic 
waves which propagate toward the surface of the planet, and we 
feel an earthquake. U p to this point, there is similarity with the 
setting in motion of a rotor, as described above. 

But that is not all. The displacement of masses inside the earth 
brings about gravitation waves which propagate in space, outside 
our planet. The action of this perturbation can be felt on all 
objects and planets, even very distant ones. 

This long distance action depends on a universal constant (New-
ton's constant), which does not play any role in rotating frames. 
The equivalence principle as stated by Einstein at the beginning 
of his theory is not, moreover, maintained later when the actual 
role of the curvature of the universe is discussed. One can wonder 
whether this equivalence actually constitutes a fundamental pro-
perty, and whether its statement does not represent an extra-
polation going far beyond experimental facts. 

Einstein claims that the speed of gravitational waves equals the 
speed of light c. However, during the last fifty years, no experimental 
verification could be found. Gravitation may propagate with a 
speed much inferior to c, or even spread according to a law of 
diffusion or of heat propagation, nobody knows! (See Chapter 3.) 

Concerning the propagation of actions and reactions, Einstein 
adopts Faraday's point of view of the reality of fields. The field 
propagating through empty space or through matter is composed 
of waves with finite velocities; in these waves one can find, beside 
the field, a second-order tensor (with four dimensions) which 
receives actions and reactions and transmits them step by step. 

* It is fashionable to recall Mach's ideas about the origin of the notion of 
mass. These theories of Mach remained very vague and without experimental 
confirmation. We specify a " neutral " projectile because rotation of electric 
or magnetic bodies produces electromagnetic fields at a distance. 
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Einstein did specify the importance of the equality between these 
local actions and reactions ending in a propagation at a distance. 
In this manner, he says, the third principle of Newton is perfectly 
respected. 

Is this so? How far are these actions going to propagate? They 
cannot last indefinitely. The waves which we imagine ending 
upon other material bodies will be reflected there, and so on, and 
so on, ..., and finally all will be lost at infinite distances! Here 
the question must be raised again: Which waves should we accept 
at infinite distances? On every boundary, some boundary condi-
tions have to be specified, even if the boundary is at infinity. 
However, these boundary conditions have never been stated. 

Levi-Civita (1937) and other authors select diverging waves 
(with retarded potentials) going even farther and carrying away 
their unwanted reactions. Einstein, Infeld, and Hoffmann (1938), 
on the contrary, use standing waves (superposed advanced and 
retarded ones) which adds up to imagining an immense mirror at 
infinity. This hypothesis is hard to accept. 

The problem should be stated clearly and everybody should 
agree upon a boundary condition acceptable to all physicists. 

What can we imagine? The problem of the behavior of gravi-
tational waves looks like that raised for light or corpuscular waves. 
As far as light is concerned, we accept that it is lost at infinite 
distances, and that it spreads in the form of retarded waves (see 
Chapter VI , SU) . We have no grounds for imagining that waves 
can come back from infinity. When one tries to specify these 
assumptions, one realizes how shaky they are. However, astro-
nomers have never described anything which resembles a mirror 
at infinity. When gravitational waves are concerned, it seems 
reasonable (we do not say proven) to imagine similar conditions. 
This would make us select solutions of the type advanced by 
Levi-Civita, not those of Einstein. W e would have to believe that 
forces of action and reaction are able to disappear at infinity. The 
third principle of Newton was strict in rational mechanics and 
gets blurred in relativity! The nonlinearity of gravitational waves 
complicates the situation, but for very great distances these waves 
become very weak and little by little linearity is restored. 

The nature of the solutions at infinity is essential for the physi-
cist and for the engineer. Is there or is there not emission of 
radiation? Can we dream of using Einstein's waves of gravitation 
to transmit signals? What is the speed of propagation of these 
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waves? Gould these transmission methods offer serious competi-
tion to the now overloaded electromagnetic radio? Many ques-
tions are left hanging. 

5. Sets of Mathematical Coordinates or 
Physical Frames 

Let us remind the reader of the origin of our discussions: In 
geometry or in kinetics, we use sets of unreal coordinates, supposedly 
infinitely rigid and without mass. One does not really talk of mass, 
since this notion appears only later, in physical mechanics and in 
dynamics. We have seen that at this second stage the frame of 
reference must be able to absorb reactions without moving. We 
therefore had to admit that this frame had an infinite mass; in 
order to establish this distinction, we propose two different deno-
minations : 

Sets of coordinates, rigid, no mass, in geometry 
Frames of reference, infinite mass, in dynamics 

Let us emphasize here that our definition of heavy frames of 
reference is in complete agreement with the selection of a clock 
based on the Mössbauer effect, a clock whose central atomic 
system is solidly embedded in a heavy crystal. 

When reading Einstein's papers, one can readily see that he 
does not make this distinction and ascribes to sets of coordinates 
(without mass) properties that apply only to heavy frames of 
reference. But first let us discover in those very papers a premoni-
tion of the frames of reference (Einstein, 1911). In the second section 
of this paper, Einstein writes: 

Let us consider two material systems Slf S2 provided with 
instruments of measurement... . 

Einstein does not specify that the mass of these material systems 
be very large, but he senses that a set of unreal coordinates is not 
sufficient and that one must imagine a material system, an actual 
laboratory of measurement. 

In a later paper, which is the fundamental statement of general 
relativity, Einstein (1916) goes on, forgetting these precautions 
and making some surprising statements. In section 2 : 

We are able to " produce " a gravitational field merely by 
changing the system of co-ordinates. 
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In section 3 : 

The general laws of nature are to be expressed by equations 
which hold good for all systems of co-ordinates, that is, are 
co-variant with respect to any substitutions whatever (gener-
ally co-variant). 

At the end of this last sentence, we think should be specified: 
substitutions with a physical meaning, and representing an actual 
operation in the Bridgman sense. This is exactly the point when we 
disagree with Einstein. 

Again in Section 3 : 

In the general theory of relativity, space and time cannot be 
defined in such a way that differences of the spatial co-ordinates 
can be directly measured by the unit measuring-rod, or differ-
ences in the time co-ordinate by a standard clock. 

This is a very dangerous statement, contrary to any experi-
mental concept of science. We should be told how to effect these 
measurements. Otherwise the words " space " and " time " lose 
any physical meaning. We shall come back to this fundamental 
difficulty later. 

Einstein's general sets of coordinates have been so popular as 
to be given the nickname " Einstein's mollusks." But can a 
physicist be forced to work under such conditions? It seems cruel 
to supply him only with rubber yardsticks and irregular clocks! 

Finally in Section 4 : 

According to the general theory of relativity, gravitation 
occupies an exceptional position with regard to other forces, 
particularly the electromagnetic forces, since the ten functions 
representing the gravitational field at the same time define the 
metrical properties of the space measured. 

Einstein presents this statement as a property of nature, we 
would rather call it Einstein's postulate. All the effort of this author 
tends to reduce gravitation to geometry, and this at the price of a 
gulf, an actual breakup between gravitation and electromagnet-
ism, through replacing the spatial potential of gravitation (New-
ton) with a tensorial potential of the second order, wrapping 
together gravitation and geometry. This is a genial mathematical 
work, but its application to physics remains open to discussion. 
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6. Fock's Assumption 

One may hope to keep the theoretical method of Einstein, which 
still looks attractive, but it will be necessary to specify the defini-
tions and set a limit to the conditions of application. 

Moreover, the theory has already proven its excess of generality. 
Einstein himself declared that space and time cannot be related 
in a unique fashion to the results of measurements. No physicist 
will be satisfied by such a statement. 

Let us consider a very remarkable book by the famous Russian 
scientist Fock (1964). This book contains a discussion of Einstein's 
ideas and rebuilds the usual Einstein theory from a very original 
viewpoint. Fock is able to obtain a practical solution of many 
difficulties. His most interesting result is the fact that it is un-
reasonable to keep the theory as completely general as Einstein did, and 
that some simple rules lead to a great simplification of the mathe-
matical structure; at the same time he obtains a much better 
physical explanation of the practical meaning of the theory. He 
gets rid of unphysical generality and selects what he thinks is the 
best set of coordinates by assuming that the contracted R iemann-
CristofTel symbols Γ* are zero (Fock, 1964, pp. 4, 193, 215): 

Γα = 0, harmonic coordinates (4.1) 

These four additional conditions completely determine a " pre-
ferred " frame of reference, for which no correction is needed in 
the four-dimensional operation of wave propagation: 

ΟΦ = 0 (4.2) 

This means isotropic wave propagation with c playing the role of 
an absolute constant. 

The theory developed by Fock requires careful examination. 
His method is certainly brilliant but it is not obvious whether his 
solution is the only possible one. He selects a certain class of frames 
of reference that simplify the solution, but perhaps there are other 
classes to be considered and compared with those considered by 
Fock. It also remains to be proven that Fock's selection o f" pre-
ferred " frames corresponds to practical experimental conditions, 
especially with the modern definition of clocks (Chapter 3) and 
with the role played by the mass of frames of reference (this 
chapter) . 



52 COORDINATES AND FRAMES 

7. Schwarzschild's Problem 

Some special examples may be helpful for a better understanding 
of the difficulties. Let us first consider the static problem of a 
particle at rest, with a field of spherical symmetry (see Pauli, 
1958); we use coordinates A;1, #2, #3, and #4 = ct and obtain 
Schwarzschild's solution 

with 

and 

ds2 -= (dx1)2 + (dx2)2 + (dx*)2 

+ [x1 dx1 + x2 c 
r2 (r - 2m) 

-(ΐ-τ)(^)2 

m = GM/c2 

r* = (x1)2 + (x2)2 + (x*) 

(4.3) 

where M is the mass, G the gravitation constant of Newton, and 
m the reduced mass. 

This solution becomes singular for a critical radius 

r0 = 2m (4.4) 

One should immediately note the possibility of deriving other 
mathematical solutions by suitable changes in the four coordi-
nates. For instance, one may avoid the second group of terms in 
Eq. (4.3) and obtain isotropic space with 

m 4 
ds2 = ( 1 +— [(af*1)2 + (<&2)2 + (af*3)2] 

Π -m/2r"[ 
\dx*)2 (4.5) 

a new solution that collapses for 

r0 = m/2 (4.6) 

Both solutions behave similarly at infinity. Which one should we 
compare with experimental measurements? Should we select x1, 
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x2, #3, and ct from Eq. (4.3) or from Eq. (4.5)? The question 
remains open. It is even worse than that : Any arbitrary change 
of coordinates can be applied and an infinite number of solutions 
obtained! Einstein's methods are much too general and do not 
yield any precise answer! Fock assumes that his condition (4.1) 
yields the frame of reference corresponding to actual physical 
observation. He obtains a third solution 

ds2 = — dr2 + {r + m)2 (άθ2 + sin2 Θ dcp2) -c2 ~ dt2 (4.7) 

r-m r+m 

This expression collapses for 

r0 = m (4.8) 
The comparison of Eqs. (4.3), (4.5), and (4.7) clearly shows 

the trouble with Einstein's overgeneralization. And we may ask: 
Does Eq. (4.7) represent the last word? How can we prove that 
this solution actually corresponds to our length and time measure-
ments in a laboratory at rest in a gravitational field ? This cannot 
result from mathematical considerations but only from a careful 
discussion of actual experimental conditions. Such a detailed 
" operational analysis " according to Bridgman is absolutely 
needed, and it seems to be still missing. Looking at the preceding 
formulas, one feels that Eq. (4.3) looks awkward, and attempts at 
explaining it in physical terms are not too good. So we are left 
with Eq. (4.5) exhibiting local isotropy in space, or Eq. (4.7) 
characterized by local isotropy in wave propagation, a very 
troublesome situation indeed. Fortunately, in practice, reduced 
units result in an unbelievably small value for the critical radius 
r0 so that the extremely small distances at which these catas-
trophes occur are practically unobservable. 

We shall come back to this problem in Chapter 7 and re-
examine it from a different point of view. 

8. Quantum Theory versus Relativity 

Two monumental theories were introduced in physics around 
1900: Planck's quantum theory and Einstein's relativity theories. 
Now that more than sixty years have elapsed, we may compare 
their impacts on scientific thinking. (Quantum theory is fundamental 
but constantly changing; its ideas are being subtly refined and 
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readjusted almost every year to account for millions of new ex-
perimental results. One might count at least one hundred suc-
cessive types of quantum theories. Relativity was built by Einstein 
into a most logical and rigid frame; special relativity was an 
enormous success, especially with the energy-mass relation. Gen-
eral relativity first seemed to be verified in three different types 
of experiments, of which two are seriously in doubt currently 
while the last one (red shift) checks very well with the latest 
experiments but can be explained by a much simpler theory (see 
Chapter 6). So we have to raise the question: General relativity 
is a splendid piece of mathematics, but what about its physical 
reality? 

The general theory of gravitation, called general relativity (an 
unfortunate and misleading name, as emphasized by Fock) is 
based on the assumption that the gravity field propagates with 
the velocity of light waves c. No such effect has ever been observed 
although it may not be completely ruled out, as the very accurate 
observation of Weber (1967) shows. 

If we investigate the matter further, we note that Einstein 
started his theory of general relativity with the aim of reducing 
gravitation and electromagnetism to space-time geometry. Hence, 
the obvious suggestion that both should have the same velocity c. 
Einstein succeeded in including gravitation in a four-dimensional 
geometry; but there was nothing to be done for electromagnetism. 
We now come back to the question stated at the beginning of 
Chapter 3. How does the gravitation field spread around? 

a. As waves with a velocity vg ^ c? 
b. According to a diffusion equation? 

There is absolutely no experimental answer and the question 
remains open. 

The experimental " proofs " of general relativity were: 

1. Deflection of light rays passing near the sun, observed during 
eclipses. These were very inaccurate experiments with individual 
errors of 100% and averaged errors of 30%. The theory is not 
safe because it assumes an ideal vacuum near the sun's surface, 
while we can observe very powerful explosions of matter and 
radiation from the sun. 

2. The rotation of Mercury's perihelion. An apparently good 
check was proven largely accidental by Dicke (1967). 
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3. The red shift of spectral lines in a gravitation field. The 
Pound experiments brilliantly prove the result with 1% accu-
racy, but a very simple reasoning, using the mass hv\c% of a 
photon hv, is enough to make the prediction. 

As a conclusion: There is no experimental check to support 
the very heavy mathematical structure of Einstein. All we find is 
another heavy structure of purely mathematical extensions, com-
plements, or modifications without any more experimental evi-
dence. To put it candidly, science fiction about cosmology—very 
interesting but hypothetical. 

Altogether, we have no proof of the need for a curved universe 
(space plus time) and the physical meaning of this theory is very 
confusing. 
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Chapter 5 Special Relativity 
Doppler Effect 

1. A Reappraisal of Fundamental Assumptions 

In the preceding chapters we analyzed a variety of experi-
mental evidences that led us to a complete reappraisal of many 
basic assumptions in theoretical physics. We emphasized in Chap-
ter 3 the fundamental importance of the Mössbauer effect and of 
atomic clocks, both experimental developments that Einstein 
could not foresee and that enable us at present to give a very 
precise empirical (and quantum theoretical) definition of ideal 
clocks. This modern definition of a clock must precede any dis-
cussion of what an ideal clock actually does. This is not mere 
guesswork, but logical reasoning according to Bridgman's opera-
tional method, or, better said, according to the traditional method 
of experimental science, which was responsible for the enormous 
success of modern science and definitely created natural philo-
sophy as distinct from metaphysics. 

This line of discussion was developed in Chapter 4, where a 
number of classical problems of theoretical mechanics were dis-
cussed and it was finally stated that a sharp distinction should be 
made between geometry and physics. The sets of coordinates in 
geometry should not be confused with the frames of reference of 
physics. The notion of mass is unknown in geometry and cannot 
be defined without physical experiments. The frames of reference 
of physics are schematizations of actual physical laboratories, 
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some solid and heavy structures containing a variety of measuring 
instruments. 

This general viewpoint is in complete agreement with the 
definition of an atomic or Mössbauer clock specified in Chapter 4. 
The Mössbauer clock has an exceptional character of using an 
atom embedded in a heavy crystal structure that itself is resting 
in a very heavy, physical frame of reference. 

Our viewpoint is, however, in contradiction with Einstein's 
assumptions when he was dreaming of reducing physics to a 
branch of geometry and taking for granted the possibility of doing 
this with the help of a Gauss-Riemann geometry. Einstein's 
dream comes very close to real physics, but it is in contradiction 
with the definition of actual atomic clocks, and one should not 
forget that these clocks represent the most remarkable measuring 
instrument in physics, with an accuracy reaching 1013 for atomic 
clocks or 1016 for future Mössbauer clocks. 

The restricted relativity of Einstein represents an extraordinary 
achievement, but we shall see that the so-called general relativity 
may only be considered as an approximation, and certainly needs 
a thorough revision. 

2. Recoil Problem for Atoms 

Let us consider an atom and assume that it remains at rest in a 
certain frame of reference. This atom may have some energy 
levels, Ex and E2 say, and is able to emit a frequency hv0, where 
v0 is the unperturbed frequency, according to Bohr's condition 

E1-E2 = hv0 (5.1) 

We also remember the famous mass-energy relations: 

Ex = Mxc
2, E2 = M2c2 (5.2) 

where Mx and M2 represent the total mass of the atom (including 
the rest-mass of the nucleus, etc.) on its energy levels, Ex or E2. 
Condition (5.2) includes the fact that Μλ\λ and Af2v2 do repre-
sent the momenta. 

Here we sound a note of caution. The atom initially at rest 
was falling from energy Ex to E> and emitting a photon hv; this 
photon, according to Einstein, carries a momentum hvjc; hence 
we have a recoil on the atom (mass A/2) which takes a velocity v. 
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Conservation of momentum requires 

- ^ = M2v = E2
 V- = 1 E2ß with β = - < 1 (5.3) 

c c* c c 

and by this recoil the atom obtains a kinetic energy 

£kin = W2v* = E2v*/2c* = \Εφ* (5.4) 
This energy must appear in the energy balance and relation (5.1) 
must be replaced by 

E1-Et = hv + ΐ £ 2 β 2 (5.5) 

with new frequency v perturbed by classical recoil. 
This classical result is only a first approximation for v <̂  c. We 

may compute a better approximation with the help of relativistic 
mechanics, replacing Eqs. (5.3) and (5.4) by 

-kin F f * ll 
'2[(1_£2)1/2 J 

hv E2 v 

c (1 -βψ* c* 

The second equation reads 

(5.6) 

2 r = -hv or ——S——- = - — = a (5.7) 
( 1 - 0 2 ) 1/2 ( 1 - 0 2 ) 1 ' 2 E, 

This is easily solved 

ß2 1 P = a2, — — = 1 + a 2 (5.8) 
1_^2 1 — jS« v ) 

hence, 

^kin = £ 2 [ ( l + a 2 ) 1 / 2 - l ] = Λ·--Λν0 

This relation reduces to (5.5) when β is very small 

E2> hv, oc < 1, 0 < 1 (5.9) 

What we want to make clear is that the actual frequency v 
differs from the " frequency of an atom at rest " by a term that 
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can become negligible only when the energy E2 of the atom is 
very much greater than hv. 

A frame of reference at rest requires a large rest energy, hence 
a heavy mass. This is a typical example of the general result of 
Chapter 4. It also checks with experimental results that lead to 
the choice of cesium (the heaviest of alkaline metals) for astro-
nomical standard clocks, or to the use of Mössbauer rays in 
Pound's experiments. 

3. Doppler Effect 

A careful discussion of the Doppler effect leads to similar con-
clusions. Here we refer to a paper by Schrödinger (1922) and 
explanations given by Sommerfeld (1954). 

An atom on energy level Ex comes to point 0 (Fig. 5.1) with 
incident velocity vx at angle θλ and emits a quantum hv in the x 

y 

0 

E ? / v 2 / 

/ / 

/γ2γ 
Observer 

FIG. 5.1 

direction. After this emission the atom retains an energy E2 and 
a velocity v2 at angle 02. We write the three equations for energy 
and momentum conservation in the x and y directions: 

Εχ 

(1 -ft»)«» (1 -ft»)1'" 

Ex v1 cos θτ Ε, 

+ hv, ßi = OJC, i = 1,2 (5.10) 

2 v2 cos θ2 hv 
(1 - f t 2 ) 1 / 2 c2 (1 -β2ψ

2 c* 
·+ — 

c 

Ex vx sin θχ v2 sin θ2 

(1 - f t 2 ) 1 / 2 c* (1 -β2ψ
2 

(5.11) 

(5.12) 
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Combining (5.10) and (5.11) we obtain 

E E 
- * ,. (c -νΛ cos ΘΛ = - — j - (c - Vo cos θο) (5.13) 
(1 -ß 2 ) 1 / 2 (1 -ß 2 ) 1 / 2 

Let us introduce the notations 

c - v{ cos di 

Jh sin θ{ 
r * V 2 - 7 / . 2 W 2 ' V ' 

We obtain from Eqs. (5.12) and (5.13) 

Ελφχ = Ε2φ2 = a and Ελφλ = Z s ^ = γ (5.15) 

where a and γ are constants. Next, we have the identity 

v-°^-n%i» ( 5 · 1 6 ) 

and our first equation (5.10) reduces to 

2φ1 2φ2 

= 1 (£,«-£,·) (5.17) 

with the help of Eqs. (5.15). Hence, 

hv = ^ ? ( ^ - £ , ) = - ° Äv0, £ 0 = *1±&* (5.18) 
Za a z 

when is0 is the average of Εχ and £"2, while v0 represents the un-
perturbed frequency (5.1). We want to compare this result with 
the classical relativistic Doppler effect VD corresponding to an arbi-
trary velocity v0: 

c - v0 cos U0 

(c2-v0
2)V* 

VO = Ψο^Ό (5.19) 
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with the notation of (5.14). The difference between our result 
(5.18) and the standard Doppler formula (5.19) comes from the 
fact that we have two energy levels Ex and E29 two velocities v1 

and v2 and two angles θλ and θ2 while the classical formula con-
tains only one E09 one v0 and one θ0. The classical Doppler formula 
(5.19) can be considered only as a. first approximation provided 

v± ^ v2 z& v09 ^ι ^ ^2 ^ ^o? Ex z& E2 πα E0 

these conditions requiring obviously a very small recoil impulse. 
Hence, 

E2 > hv (5.20) 

which is again the same condition as in (5.9). 
Classical relativistic formulas are valid only when the total 

energy of the atom is very large compared with the change occur-
ring during quantum transition. This corresponds exactly to 
what we stated in Chapter 3. A physical frame of reference must be 
very heavy. 

4. Discussion of the Actual Quantized 
Doppler Effect 

Let us reexamine the experiment sketched in Fig. 5.1. We have 
a fixed frame of reference Oxy, at rest, and our observer (or ob-
serving apparatus) is at some distance to the right in the x 
direction. We observe radiation emitted from a moving atom 
(proper energy level Ετ)9 velocity vl9 angle θΐ9 and we know that 
this radiation is emitted when the atom drops to another proper 
energy level E2. We have the initial data 

El9 E2, vl9 θχ (5.21) 

After the emission the atom obtains a different velocity (v29 θ2) 
but we do not observe this velocity directly. What we observe is 
the frequency v of the radiation emitted in the x direction, and 
we compare it to the frequency v0 that would have been emitted 
by an atom at rest with unperturbed frequency v0 

hv0 =E1-Et (5.22) 

Our formula (5.18), combined with (5.15) and (5.14) yields the 
quantized Doppler effect: 
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1? 
v 

2<x 

£ x +£ 2 £ t( l 

2Ψι 

\+{Ε,ΙΕλ) 

Γ 2 > -

+ EJEl) 

V1 COS 0 χ 

[ 1 +Ε2ΙΕλ\ ( c 2 - ^ 2 ) 1 / 2 ^5' ^ 

We managed to keep in this final formula, only the initial data 
and the frequencies v0 (unperturbed) and v (observed). 

Comparing this final result with the classical Doppler effect 
(5.19), we note that the quantized Doppler effect contains the 
bracketed additional factor 

1 * (rrib,) *2 < 5 · 2 4 ' 
This factor is nearly unity when E2 is very close to El9 and this 
corresponds to the standard Doppler effect discussed at the end 
of the preceding section. The same factor may go up to 2 when 
E2 becomes smaller and smaller. The limit 2 is obtained when E2 

is zero, which means total disintegration of the atom into two 
photons, one observed along x and the second one escaping with 
Vo = c in the direction θ9. 

5. A Correct Statement of the Principle 
of Relativity 

We sketched in Chapter 1 the historic development of the prin-
ciple of relativity. The point of departure was found in classical 
mechanics, where it was discovered that all the laws of motion 
were exactly similar within a frame of reference at rest or within 
a frame moving with a given constant velocity v. After this first 
step (emphasized by Poincare) came the discovery that relative 
motions of translation could not be observed in electromagnetism 
also. 

Right at the beginning we must clearly state a difficulty which 
seems to have been overlooked by most authors. It results from the 
discussion of Chapter 4. 

What does it mean to speak of a frame of reference moving with a given 
constant velocity v, with respect to a frame at rest? 
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This statement does not make sense unless both systems (the 
one at rest and the other one in motion) are very much heavier 
than anything observed. It is meaningless to speak of a " given " 
velocity. When an astronomer discovers a new moving body in 
space, he does not initially know the velocity. In order to measure 
the velocity, he must proceed with experiments. He may send some 
bullets to the unknown object, have them reflected back to him 
and observe the time intervals in pulses; in order not to disturb 
too much the moving object, he will choose the lightest known 
bullets: light photons. But even photons do have a mass; when 
emitted they push back the " frame at rest " by recoil and when 
reflected they push away the frame in " uniform motion." The 
uniform relative motion is perturbed, and our definition is mean-
ingless. We rediscover here the well-known rule: Any experiment 
means a perturbation. The perturbation may only become negligible 
if the masses of both systems are really huge, very much greater 
than those of our photons. 

This is again the problem discussed in Section (4.3) about the 
very definition of a frame of reference in physics. The Schrödinger 
discussion of Section 5.4 about the Doppler effect means exactly 
the same thing. If our atom has a small initial energy El9 the 
final energy E2 is much smaller than Ex and the factor 2E1I(E1 + E2) 
of Eq. (5.24) may differ very much from unity. This factor cor-
responds directly to the recoil effects, and the emission of hv 
modifies the velocity (v2 Φ v^). The frame of reference cannot 
maintain a constant velocity. 

Frames of reference, either at rest or moving with a constant 
velocity, represent an idealization that can be used only for very 
heavy systems. 

This sort of idealization was taken for granted in past centuries, 
when everybody assumed that " just looking " at a moving object 
could not perturb its motion; but we know that this assumption 
was wrong and cannot be maintained today. 

In the preceding discussions we used a discovery of Einstein; 
the light quantum, or photon. This was the discovery for which a 
Nobel prize was granted to Einstein because of so much experimental 
evidence about its physical reality. Nevertheless, Einstein never 
liked his photon as tenderly as his beloved relativity. The photon 
was a natural child, a bastard born out of wedlock; Einstein re-
mained a strong believer in differential equations in a continuous 
medium. Discontinuities and quanta seemed to him unnatural . 
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It is, however, with quantum conditions and photons that (much 
to our surprise) we discover the fundamental laws of physics and 
the modern definition of clocks! 

6. How Does a Moving Clock Behave? 

What we said about an atom can actually be observed with a 
moving clock, since a modern clock is nothing but a laser system 
synchronized on one atomic frequency. Einstein could not have 
foreseen this experimental definition of an ideal clock; he could 
not have imagined how the clock would appear to a moving 
observer, nor how a moving clock would behave when observed 
from a frame of reference at rest. 

The clock is a piece of apparatus emitting a definite frequency 
v0 in a frame of reference where it stays at rest. It represents a 
standard frequency. When the clock it moving with a constant 
velocity v, we may observe a whole spectrum of frequencies de-
pending upon the direction of the velocity v, and the whole result 
is described by our formula (5.23) for the quantized Doppler effect. 

Instead of speaking of a variety of frequencies emitted by Doppler 
effect, Einstein spoke of a modified scale of time and this led to 
all sorts of paradoxes. 

The ideal clock should be very heavy (Mössbauer effect, for 
instance) in order to get rid of the correction in Ε2/Ε19 but this 
correction is easy enough to apply when it may be needed. It is 
curious to note that Einstein paid so much attention to the factor 
(1 -β2)112 and practically discarded as uninteresting the whole 
structure of the Doppler effect. Actually, this effect is a whole that 
cannot be split to pieces. How did Einstein happen to come to 
such conclusions? He started from the Lorentz transformation; 
this transformation is usually written for a simplified problem 
that we shall discuss in Section 5.7. The Lorentz transformation 
suggests a length contraction along x and a similar time contrac-
tion. 

From the Lorentz transformation, Einstein (1905) computes 
the Doppler effect by using an oblique velocity and obtains 
formula (5.19), but all the discussions of time scales and lengths 
measurements are based upon the Lorentz formula, where an 
oblique velocity is never considered. 
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There is, in addition to this, a curious coincidence that was 
noted by Schrödinger (1922): If one wants to obtain the correct 
Doppler effect by the computation of Section 5.3, one must in-
clude the momentum of the photon. Without this consideration 
we would be left with a single equation (5.10) that contains only 
the (1 -/32)1 / 2 effect and that corresponds to an arbitrary simpli-
fication similar to that of Einstein. 

In the discussions of the Doppler effect, we had the (1 - ß 2 ) 1 / 2 

terms appearing directly in the three fundamental formulas (5.10-
12) and these terms simply revealed the existence of kinetic energy 
for both initial and final stages. The whole computation was 
based only on the quantum condition (5.1), the mass-energy 
relation (5.2) and the principles of conservation of energy and 
momentum. 

The main point is that we have to use a model of a clock that is 
very different from the one Einstein had in mind. He visualized a 
clock as a sort of radar apparatus emitting short signals and 
measuring time intervals between such sharp signals. We now 
have clocks emitting continuous oscillations of a given frequency, 
but these clocks are not built for the emission of sharp signals. We 
look at the clock model from a very different viewpoint, and this 
description of the clock brings the whole Doppler effect into the 
foreground, while the Lorentz transformation just means a mathe-
matical tool. The interest is shifted from mathematics to physical 
facts. This is stressed also by the remark that frames of reference must 
be heavy, and that we must not talk of accelerating or decelerating 
them arbitrarily. Let us think of the laboratory at rest as a railway 
station while the moving frame of reference is a heavy train. This 
provides a good representation of what happens when velocity 
remains constant, but we do not know and should not guess what may 
happen to an accelerated clock. Descartes introduced a wonderful 
method when he invented sets of coordinates but the method is a 
terribly artificial one because it requires an origin of coordinates 
and an origin of time, for which we have no definition. Hence, 
all the results of importance must be independent of the choice 
of the origin. As soon as we speak of sets of coordinates we must 
state a principle of invariance from the choice of the origin. The only 
quantities that matter are distances between points and intervals of 
time. When we choose to center our attention on the Doppler 
effect, we avoid all these unnecessary complications. The Doppler 
effect corresponds to the actual fundamental observation. 
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7. A New Approach to Special Relativity 

All authors writing about relativity follow the same road: 

Michelson experiments -> Lorentz transformation 
-> Einstein's Theory (5.25) 

Traveling on this highway, the teacher misses many important 
viewpoints, which may be discovered if we travel more leisurely 
on another road. 

Along the many experimental proofs of special relativity, we 
may select those of greatest importance, and use these experi-
mental results as starting points. We intend to use the following 
pa th : i 

Mass-energy relation -> Atomic clock -> Doppler effect 
-> Lorentz transformation (5.25') 

This last step requires a special assumption which was clearly stated 
by Einstein, but which is usually overlooked by modern writers, 
as if it were obvious; this is, however, not the case and a special 
discussion is required. 

The mass-energy relation, proved by atomic bombs, is sum-
marized by the equations 

E = Mc2 

M = (Ü|P <5· 2 , ) 

p = Mv 

for a particle of rest mass M0, and 

E = hv = Mc\ p = - (5.3') 
c 

for photons of zero rest mass. The atomic clock discussed in 
Chapter 3 rests on Bohr's second condition 

ΔΕ = hv, period τ = ν~λ (5.1') 

These definitions, completed by the principles of conservation of 
energy and conservation of momentum are all we need for com-
putation of the Doppler effect (Sections 5.3 and 5.4). The atomic 
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clock defines a single frequency vQ in the frame of reference where 
the clock is at rest. The word " rest " implies a very high mass 
for the clock and the frame (Sections 5.5 and 5.6). 

When the clock is observed from a heavy moving frame of 
reference, it is seen to emit frequencies v that depend on the 
direction Θ of observation [Eq. (5.23)]. Let v0 be the frequency 
in the frame at rest and τ0 the period while v is the frequency and 
T the period observed in the moving frame at angle θ±; formula 
(5.23) now reads 

r_ = VQ = c - vx cos θχ . 2 _ 
T 0 V ( ^ - ^ 2 ) 1 / 2 

since periods τ and τ0 represent v_1 and v0
_1, respectively. Thus 

far we strictly follow the Doppler computation. 
In order to rejoin the Lorentz formulas^ we must remember the 

history of the subject. Lorentz was thinking in terms of the 
Michelson experiments, where the complete Doppler effect could 
not be observed. In Michelson's experiments light rays were 
always traveling back and forth in both directions, all along the 
circuit of light beams. This means that the velocity i\ was always 
associated with a ± sign. Michelson could observe nothing more 
than the average ±vv Introducing this average in Eq. (5.26) we 
get rid of the vx cos θχ term: 

(&-(?)..-<?=*>* (5·27) 

and this is the transformation of time in the Lorentz formula. 
Experiments of Joos, using a Michelson device, were about 

five times more accurate than those of Miller. New experiments 
by Townes (1958) and co-workers used two masers emitting beams 
propagating in opposite directions. The orientation of the apparatus 
with respect to the motion of the earth was modified and the 
whole device gave results fifty times more accurate than those of 
Joos. Modern lasers can yield much higher accuracy. 

8. The Lorentz Transformation 

The Lorentz transformation requires an averaging with light 
beams propagating in opposite directions. This means that the 
velocity of light is measured for signals traveling back and forth 
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over a certain distance, and this is required logically by Einstein's 
remark that time coincidence is impossible to define between two 
points at a distance. Only time and space coincidence have a physical 
meaning and can be observed. In addition, Einstein assumes 
space symmetry in a frame of reference at rest, and also in a frame 
of reference in uniform motion, since we cannot detect the motion 
by observations made within the moving frame of reference. 

This situation is clearly specified in discussions using the follow-
ing well-known model: The frame of reference at rest is supposed to 
be a long railway station, extending for quite a distance along the 
tracks. The moving frame of reference is a heavy train moving on 
the tracks. The station is equipped with fixed clocks all along the 
tracks, and these clocks have been synchronized by signals sent 
back and forth from a central clock in the station. These signals 
are assumed to be propagating with velocity c in the frame at rest. 
The train is equipped with clocks in all its cars, these clocks being 
synchronized with a central clock on the engine. Here again back 
and forth signals have been used, assuming a velocity c both ways, 
with respect to the train. This assumption (emphasized by Einstein) 
is based on the fact that no experiment made on the train can 
detect its constant velocity. There is complete symmetry between 
station and train. The station master looks at the clocks in succes-
sive cars as they run through the station, and he sees these clocks 
going slow (because of the method by which they were synchron-
ized). The same is true for the engineer looking down at the 
successive clocks he sees along the track; both situations are 
exactly symmetrical. 

Altogether, we find complete agreement with the theory of 
special relativity, although we attacked the problem from a 
completely new point of departure. 

We have to emphasize the very important role played by Ein-
stein's rule for synchronization of clocks and setting them right in each 
frame of reference; this rule is arbitrary and even metaphysical. I t can 
neither be proved nor disproved by experiments, it assumes that 
signals propagating east to west or west to east have equal velo-
cities, while Michelson's experiments only measure the average 
of these two velocities. The sudden and unverifiable assumption 
is obvious. Our discussion of the complete problem with Doppler 
effect shows that the actual physical facts do not prove Einstein's 
assumption, while this assumption is required for the Lorentz 
transformation. 
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Einstein's results are correct but the Lorentz transformation is a 
mathematical, unobservable tool—very useful, but definitely not physical. 
Similarly, the ds2 of Minkowski is a most interesting expression to 
consider but definitely not physical; in both cases the synchronization 
rule is needed and not proven, although it cannot be disproved 
either. 

9. The Problem of Traveling Twins 

This is a classical problem for endless discussions. [Many of these 
discussions may be found in a collection of selected reprints of the 
American Association of Physics Teachers (1963).] One twin 
stays quietly on his home at 0. The other one travels with great 
speed to a distant point A and immediately comes back home; 
when he is welcomed by his brother, they discover that the traveler 
is distinctly younger than the fellow at home. There is a moral to 
the fable, but let us omit it and discuss the facts. A numerical 
example simplifies the graphical discussion. Let us assume 
v = O.ßCy hence 

(1 -^2/^2)1/2 = 0 > 8 

Then the Doppler factors are 

K = ( 1 = 2 o n t n e way out 
-* \c + vl 2 y 

)cJ\™ (5'28) 

K = I 1 = 2 on the way back 

- V-vJ 
The distance OA is six light years. 

In Fig. (5.2) we take the abscissa for the distance x (in light 
years) and the ordinate for time t. The lazy twin, staying at home, 
is represented by points along the vertical axis, and his rest time 
is indicated. Dotted lines represent signals emitted by the travel-
ing twin every two hours (on his own clock). His trip away takes 
eight years, then he turns back and comes back home after sixteen 
years (on his clock) to meet his lazy twin whose clock shows 
twenty years! 
Signals emitted by the traveler after 

2, 4, 6, 8, 10, 12, 14, 16 local years 
are received by the twin at rest at 

4 , 8 , 12, 16, 17, 18, 19, 20 years. 
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Einstein's formula gives the total change (sixteen to twenty) but 
the signals in dotted lines show the Doppler effect, and there is 
no possibility of confusing the twin at rest with his traveling 
brother. Of course, the traveler is characterized by the fact that 
he supports a strong acceleration at the moment he reaches point 
B. We can choose not to speak of this disturbing acceleration if 
we use triplets instead of twins: one of the triplet stays at home, 
the second one travels away and never comes back, and the third 
one travels back and meets the second one at B. 

Here there is no question of acceleration. We simply have first 
and second brothers comparing their watches at the start when 
they meet at home, second and third brothers comparing their 
watches when they meet at A, third and first brothers comparing 
their watches when they meet at home at the end. 

The dissymmetry between the one at rest and the two others 
traveling in opposite directions is now obvious. 

The Lorentz formula is correct for the final result, since both 
directions of travel (forth and back) are used, but the considera-
tion of Doppler effects on signals emitted by the travelers reveals 
the complexity of the problem. The description with the triplets 
is simpler, since there is no question about acceleration, but only 
a question of comparing clocks at the moment when they happen 
to be together at the same point, an operation of true physical 
meaning. 

All our discussions, although starting from an unconventional 
point of departure, completely agree with Einstein's special rela-
tivity; we only emphasize the condition that every part of the 
circuit of light beams must be traveled in both directions if we want to 
eliminate the details of the Doppler effect and keep only the 
Lorentz transformation. Also of importance is the remark that 

frames of reference must be heavy (Chapter 4). It may suggest that we 
must be prepared for troubles when we apply the idea of relati-
vity to very light particles. There may be a need for corrections, 
as we discovered in the case of the Doppler effect. Nevertheless, 
this theory represents Einstein's most remarkable achievement, 
and the famous mass-energy relation is fundamental throughout 
physics. 
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Chapter 6 Relativity and Gravitation 

1. The Mystery of Gravitation 

Special relativity theory has to be reconciled with the theory of 
gravitation. Gravity was assumed by Newton to be propagated 
instantly at any distance, an assumption that appeared very risky 
at the t ime: How can one imagine no delay for actions transmitted 
across the fantastic distances of the universe. Einstein assumed a 
gravitation velocity equal to that of light 

vg = c (6.1) 

but we noticed in Chapter 3 that the only thing we can say is that 
vg is smaller than or equal to c. As a matter of fact, it is really 
remarkable that we still know nothing experimentally about the 
propagation of gravity, despite so many skillful experimental 
attempts since the beginning of this century! 

We have to rely on a few elementary observations, the first of 
them being the law of Galileo: In a vacuum all bodies fall with 
equal acceleration. Eötvös checked this law with great accuracy 
and it can best be stated by the relation 

^gravific = A^inertial (6.2) 

The gravific mass always equals inertial mass. Another way to 
state this is to notice that, in the vicinity of a given point in space 
and time, the gravitational field can be imitated or compensated 
by a field of acceleration. This is what Einstein calls the " principle 
of equivalence.' ' 
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Einstein's ideas on equivalence are well known. The best dis-
cussion, in our opinion, was given by Fock (1964) starting from 
Eq. (5.2). The explanations given in Fock's book are really illu-
minating and are recommended to the reader (see especially the 
Introduction, and Chapters V-VII). Fock emphasizes a few 
points of great importance: 

a. It is not sufficient to study space and time locally in infin-
itely small regions, just as it is not enough in classical mechanics 
to state local equations of motion. One must also specify the 
boundary conditions (or the initial conditions in classical mech-
anics), otherwise the problem is not completely defined. Local 
conditions and boundary conditions are inextricably intercon-
nected; even when the boundary is at infinite distance the 
boundary conditions are absolutely necessary, and should never 
be overlooked. 

b. Einstein assumed the necessity of not choosing any preferred 
systems of coordinates, and this led to an overgeneralization that was 
very confusing. 

If space and time are uniform at infinity, it is possible to intro-
duce a preferred system of coordinates (defined up to a Lorentz 
transformation) that Fock calls harmonic coordinates. These co-
ordinates are characterized by a condition containing the four 
contracted Riemann-Christoffel symbols, which are equated to 
zero 

Γν = gaßr:ß = 0 (6.3) 
These conditions do not introduce any essential limitations on 

the solution, but they narrow down the generality. This point 
had first been noted by de Donder (1921) and Lanczos (1922). 
We already quoted Fock in Eqs. (4.1) and (4.2) and we noted 
that in order to justify physically this choice of preferred coordi-
nates, it would be necessary to prove that the x, y, z, and t thus 
defined correspond to the quantities actually measured in a 
physical laboratory. Fock's mathematical proof of a very general 
simplification is most interesting, but it remains to be shown that his 
assumption is compatible with the role of mass in a frame of reference 
(Chapter 4) and with the modern definition of a cesium clock 
(Chapter 3) or a Mössbauer frequency standard. 

In the present uncertainty about experimental laws of gravity, 
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we are inclined to trust Fock's presentation of the theory rather 
than Einstein's general relativity, which appears too general and 
too far from physical reality. 

We completely agree with Fock on the impossibility of splitting 
the problem into two separate parts, as is usually done by mathe-
maticians. There is absolutely no reason for discussing separately 
the local conditions (equations of motion or wave equations) and 
relegating to a second place the boundary conditions (or initial 
conditions) which are supposed to be " given " arbitrarily for 
each problem. Nothing can be taken for granted and nothing is 
ever given free in experimental science. 

In the following sections we intend to base our discussion on 
the definition of the atomic clock (Bohr's second condition) and 
the general existence of energy levels over all chapters of physics. 
The lack of experimental data on gravity propagation leaves us 
in the dark, groping for our way, and we shall try to constantly 
check our deductions against empirical facts. 

First, we do not want to make any arbitrary assumptions about 
gravity propagation, and we shall restrain ourselves to steady state 
conditions. We continue to assume Euclidian space and want to 
discuss the behavior of an atomic clock in a static gravity field. 

Following our discussion of the Doppler effect in Chapter 3, we 
shall emphasize the most important role played by the photon. 

2. An Ideal Atomic or Mössbauer Clock and 
the Gravity Red Shift 

Let us investigate the definition of an ideal clock and the problem 
of the gravity red shift from a strictly experimental and opera-
tional point of view. 

Our assumptions are explained in Fig. 6 .1 : A spherical body 
of mass M, at rest, yields a gravitation potential F a t a distance r. 
This potential is zero at infinity and takes a negative value Va on 
the surface of the sphere, where we have (at r = a) an experi-
mental laboratory at rest. We compare an atomic clock located at 
infinity (potential and field both zero) with a similar clock at rest 
at point A under gravitational potential Va and a f o r c e d 

Va<0, fa- -m^° (6.4) 

where m is the mass of the atom. The heavy sphere of mass M 
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FIG. 6.1 

unambiguously defines our frame of reference at rest, where we 
may build a laboratory at rest at point A. All conditions required 
in Chapter 4 are fulfilled. 

At zero potential and velocity zero, the atom has two energy 
levels Eio and E2o, whose difference yields a radiation frequency: 

1c
2-m2c

2 (6.5) "lo -£ 2 o
 = hvo 

where m1 and m2 are the masses of the atom on both levels. Let 
us now watch the atom (on level 1) fall from infinity to a, where it 
arrives with a velocity i\. Conservation of energy requires 

m h 

Ho = ^ l . + ^ a + W ' l 2 = Ela 

va + W =o 

(6.6) 

(6.7) 

since a mass mx in the gravity potential Va obtains a negative 
potential energy mlVa that compensates exactly for the kinetic 
energy. 

Similarly, 

"2 0 
\a and vx = v2 (6.8) 

From Eqs. (6.7) and (6.8) we see that the energy levels are not 
changed by the free falling motion. But this does not tell us the 
complete story about the frequency of emitted radiation: We 
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only know the absolute value of the velocity vl9 but the direction of 
this velocity is unknown. It depends on the detailed field distribution 
and trajectory, and the direction of the velocity is important for 
the Doppler effect. 

It is absolutely necessary to stop the falling clock and bring it to 
rest in our original frame of reference; the clock must recover a 
zero velocity in this frame, and this means it must be stopped and 
strongly fastened to the heavy frame of reference (the laboratory 
at A) so as to send synchronous signals of fixed frequency all 
around (no Doppler effect). 

In order to bring the clock to rest without perturbation, we 
must use another type of force (e.g. elastic force) to compensate the 
gravity forces. We actually put the clock on a table whose elastic 
stresses and strains keep the clock at rest despite its weight. 

In Fig. 6.1 we assumed that the compensating forces depended 
on a potential Vs during the whole process of moving the clock, and 
that the total potential was 

Vt = F + F s = e (6.9) 

which is very small, giving a transportation velocity v which is 
also extremely small. At point A the total potential is reduced 
exactly to zero, and the clock is brought to rest. The dashed curve 
in Fig. 6.1 represents V\. At point A this total potential rises 
sharply, the clock is not supposed to be able to penetrate into the 
sphere. 

This slow motion does not alter the energy levels Ex and E2 and 
the frequency v remains unchanged for a local observer at rest. 
This is what happens in the Mössbauer effect, where elastic forces 
in a crystal lattice keep the atom at rest and compensate the 
gravity forces. The elastic forces of Mössbauer will absorb the 
recoil hv/c due to emission of radiation. 

The atom at rest at point A emits a photon hv0 identical with 
the one emitted at rest at infinity [Eq. (6.5)]. This photon is 
observed at infinite distance at point B and one must notice that 
the photon is not sensitive to elastic forces, while its mass μ in 
motion makes it sensitive to gravity 

pc2 = hv (6.10) 

While climbing the gravity field from A to B it loses energy, 
mass, and frequency. For a displacement dr > 0, let the potential 
increase be dV > 0 
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d(hv) = -μάν = -h^-dV 
c2 

or 
dv _ _dV 

v c2 (6.11) 

assuming c constant despite changing gravity. 
We may assume that, in most practical cases, the potential 

increase from A to B is a small quantity and write 

- = 4 Va<0 (6.12) 
v c& 

The photon's frequency is decreasing (red shift) and formulas 
(6.11) or (6.12) correspond to Einstein's prediction. We felt it 
necessary to discuss everything in detail, especially the role of 
elastic forces in the Mössbauer effect because most authors 
omitted one point or another, often reaching the correct result 
through incomplete reasonings. 

The remarkable point is that the local frequency', observed near the 
atomic clock at rest, is constant and does not depend on the local gravita-
tional potential. All our clocks, locally observed, remain strictly 
synchronous and unsensitive to the local potential V, but the 
frequency observed from a distance depends on the potential F a n d 
not on other sorts of potential energies. 

Let us emphasize that nonstatic gravity fields may not derive 
from a potential V, thus leaving the question open. 

The discussion may apply to photons or gravitons hv, all being 
uncharged and reacting only to gravity changes. Let us note that 
Einstein's original discussions, using a free falling clock and pay-
ing no attention to the problem of bringing it to rest, are in-
complete. 

3. Interpretations of the Gravity Red Shift 

Experiments of Pound and Snider (1965) using the Mössbauer 
effect were usually considered as a verification of Einstein's pre-
diction. The explanation given in the preceding section is quite 
different from Einstein's theory. This point being of importance, 
let us state the differences clearly: 
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a. We used a Euclidian space and quantized clocks corres-
ponding exactly to the experimental device of Pound. We proved 
that such clocks gave locally a time definition independent of gravity 
potential] a, more elaborate discussion in Section 6.4 will show that 
only a very small influence of the gravity field might be expected. 
It was essential in the discussion to assume a single frame of 
reference, at rest with respect to the heavy body creating a con-
stant gravity field, and to specify that we should always use clocks 
at rest in this constant field. The heavy body, supporting our 
laboratory, defined our preferred inertial set of coordinates. And in 
this frame of reference all clocks were exactly synchronous locally whatever 
the gravity potential might be. 

With this model, a change of frequency occurs during the propaga-
tion of the photon through the gravity field. We may be surprised 
by this statement and ask: How can this happen? Let us candidly 
admit that we do not know how to explain it. We have no model 
for such an effect. It rests directly upon Bohr's formula (6.3), 
which has never been explained in any " reasonable " way. We 
have to take it as an empirical result beyond our comprehension, 
but supported by an enormous amount of experimental obser-
vations. 

b . Einstein used ideal clocks of an undefined structure, and 
attempted to discuss their behavior in a field of gravitation. This 
should not be considered as a criticism of Einstein: There was no 
knowledge at the turn of the century of how to build an ideal 
clock or exactly how it might behave. 

The result, however, is that it is rather difficult to understand 
Einstein's discussion on the subject (Einstein, 1911; Einstein, 
1924, pp . 100-107) and the best thing is to refer the reader to this 
fundamental paper. In a previous paper (Einstein, 1905; Ein-
stein, 1924, p . 56) we find an excellent and complete discussion 
of the Doppler effect in restricted relativity, showing how the 
radiation frequency depends on the angle φ between the velocity 
v of the source and the direction of observation. 

In the 1911 paper (Einstein, 1924, pp . 102-104) Einstein con-
siders the case of a constant vertical field of gravitation, and 
assumes that this problem should be equivalent to another one with 
constant vertical acceleration. The conditions for such a principle 
of equivalence were never stated exactly, and have been very 
strongly criticized by many authors (e.g., Fock, 1964). In 1911 
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Einstein considered a clock starting with an initial velocity zero, 
falling vertically with a constant acceleration y; after falling a 
height H, the clock reaches a velocity v. This clock emits radia-
tions v which, when observed from a fixed position, appear (by 
the Doppler effect) with a frequency 

Here Einstein uses the Doppler formula for φ = 0, thus assuming 
that the motion remains vertical and that radiation is observed 
from the original position of the falling clock. He does not care 
about any oblique Doppler effect or frequencies observed from 
angles φ Φ 0. 

The whole discussion is really obscure. Read the following 
paragraph, for instance (Einstein, 1924, pp . 106, 107) and try to 
understand which clocks are of identical construction and which 
are not: 

For measuring time at a place which, relatively to the origin 
of coordinates, has the gravitational potential Φ, we must 
employ a clock which—when removed to the origin of co-
ordinates—goes (1 4- Φ/c2) times more slowly than the clock 
used for measuring time at the origin of coordinates. 

This is very strange: When building a clock in a laboratory it 
would not be enough for us to measure locally the gravity field 
in the laboratory, but we should know all the field distribution 
in the whole universe, up to infinite distances where Φ = 0 in 
order to compute the local Φ in the laboratory! 

The connection between the variable t in Einstein's equations 
and the time measured in our laboratories is far from clear. One 
may wonder why this very special problem of vertical motion was 
singled out for discussion. We may, for comparison, select another 
example: the motion of an atomic clock along a Kepler ellipse around 
the sun. The mass of the satellite may be large compared with the 
masses of photons emitted or absorbed. Furthermore, the trajec-
tory remains unchanged when the mass of the satellite is modified, 
since it is moving in a " field of acceleration." At aphelion, the 
satellite is far away from the sun, the potential is small and the 
small velocity v& is perpendicular to the radius ra (Fig. 6.2). At 
perihelion, potential and velocity vp are large. There is conser-
vation of energy along the motion, so our energy levels 
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remain unchanged. By selecting a very elongated ellipse, we may 
remove the aphelion as far as we want, and go to the limit of a 
parabola; hence we are sure that the energy levels are the same 
as at infinity 

El0 and E2o 

In order to eliminate the Doppler effect, we may choose to ob-
serve quanta hv emitted along the radius, hence perpendicularly 
to the velocity, and we can state safely that the emitted photon 
is constant: 

hv = hv0 (6.14) 

independent of the gravity potential. 
This is in complete agreement with our previous discussion. 

Instead of using clocks at rest we observe here clocks keeping a 
constant distance from the sun for a short time interval. Both pro-
cedures lead to identical results. 

Einstein found it necessary to introduce a curved space-time 
and based his general relativity on this ideal notion. We did not 
feel the need for such curvature of the four-dimensional universe, 
because quantum conditions gave us a different answer. This 
situation was made even more obscure by some theoreticians who 
used both curvature of the universe and quantum theory, a 
mixture leading to hopeless confusion. 

Let us try to summarize the situation. We use an atomic clock, 
whose properties are defined by the laws of quantum mechanics. 
As a result, we must assume our clock to be at rest in an inertial frame 
of reference, whether there exists a gravity field or not. This clock 
may (as we shall see in Section 6.4) be influenced by the gravity 
field, but it is unsensitive to gravity potential. All the clocks at 
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rest in our inertial frame will give the same frequency definition, 
with or without gravity potential. The gravity red shift is only 
due to the motion of photons. 

4. The Possibility of a " Gravi-Spectral " 
Effect 

The discussion of Sections 6.2 and 6.3 predicts a frequency change 
due to the gravitational potential in a static problem. 

We may also be surprised not to find anything similar to the 
Zeeman or Stark effects, where frequency of radiation depends 
on the magnitude of the field, not the potential. This simply means that 
such effects have been ignored and overlooked, but they should exist. 
We cannot discuss the problem for y-rays, since the mechanism 
of these rays rests within the nucleus and is not known exactly. 
We shall select another problem, and consider an atomic clock using 
an optical frequency v0. The red shift due to the gravity potential 
is still given by formula (6.12), and we may use the theory of 
optical spectra for Stark effects. We assume that the forces acting 
upon the atom and maintaining it at rest in a crystal lattice act 
upon the nucleus of this atom, but not upon the surrounding 
electrons. This is obviously an oversimplified model used by 
Brillouin (1967) for the purpose of proving how some frequency 
changes due to the gravity field might occur. 

The electrons surrounding the fixed nucleus are still feeling the 
local gravity field fa [Eq. (6.4)] which gives equal and parallel 
forces on all individual electrons, just as a constant local electric 
field/e would do : 

ef. = - m ' ^ - / . (6.15) 

where e and m' are the electronic charge and mass, and these forces 
must result in a very weak Stark-like multiplet. The order of 
magnitude of Stark multiplet splitting is 

3efenh = 1 3 7 3nefa 
e 8n*m'Ze2 Airm'Zc 

where %e λ% t n e charge of the nucleus, n is an integer and 
hc/2ne2 = 137. Let us now use Eq. (6.15) and consider the situa-
tion at point A of Fig. 6.1, where the atom is at a distance a from 
the center 0 of attraction M, 
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efe -fa - ~—μ- (6.17) 

where G is Newton's constant, hence 

for the " gravi-spectral " Stark-like effect. 
Let us compare this new splitting due to gravity forces with 

the red shift produced by gravity potential (Eq. 6.12), 

GM SvTel Vg GM 
yg = } = — = - — — (b.iy) 

r v cl rr 
The orders of magnitude can readily be compared 

^Ά = 137 &*-, λ = - = wavelength (6.20) 
ö^rel ^7TZr v 

The gravi-spectral effect Avg is of the order of 137 (λ/r) times the 
relativistic red shift δνΓβ1. It could be observed only for very short 
distances r from the center of attraction M. 

This short discussion proves that direct effects of the gravity field 
should exist, but may be practically very difficult to observe. 
Einstein's theory and quantized atomic theories both ignored 
this possibility, and experimental checks would be important. 
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Chapter 7 A Gravistatic Problem with 
Spherical Symmetry 

1. A New Approach to an Old Problem 

We discussed in Section 4.7 the famous Schwartzschild problem 
according to Einstein's theory. We should explain that this prob-
lem is usually stated in a curious way: One considers the case of 
a " point mass at rest " and looks for a solution exhibiting spheri-
cal symmetry in space with no time dependence. This does not 
tell anything about boundary conditions. Later in the discussion it 
is assumed that at large distances the metric tensor should corres-
pond to Euclidian vacuum, thus specifying boundary conditions at 
infinity; but no specific conditions are given for small distances 
from the origin. A complete statement of the problem should 
include the conditions on a small sphere a enclosing the origin 
(which is a singular point). In Schwarzschild's discussion, the r0 
value is not given, and the mass of the " point mass " is only 
introduced at the end of the computation in order to obtain a 
potential decreasing in Gmjr at large distances r, where G is 
Newton's constant. This is one of the reasons why there remains 
so much uncertainty in Schwarzschild's solution. In our discussion 
we shall see that Schwarzschild's mass m represents the mass of 
the center point plus mass densities in the field. 

What we intend to do now is to start from the classical problem 
of gravitation around a sphere of given mass and given radius; 
then we shall examine how this solution must be modified to 
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include the role of mass-density distribution in the space around 
the sphere resulting from the energy density in the field and the 
mass-energy relation. This should give us a reasonable generali-
zation of the classical solution, in which the physical meaning of 
all quantities can be correctly understood. Einstein's equations 
are not used. 

2. Gravistatics Compared to Electrostatics 

In the static problem with spherical symmetry, we immediately 
notice that we can put aside the variable t, which plays no role. 
Our discussion of Chapter 6 enables us to use a preferred frame of 
reference, where the origin of coordinates is at rest at the center of 
the spherical mass; in this frame of reference, all the atomic 
clocks maintain a perfect simultaneity, and we have a single time 
definition throughout. This does not interfere with the well-
known gravity red shift (discussed in Chapter 6) that results from 
the motions of photons of mass hvjc2 through the gravity field. 

We may now compare similar problems in gravitation and in 
electrostatics. This was done by Brillouin and Lucas (1966) and 
Mannheimer (1966). In both cases we start with forces decreasing 
in r~2 with the distance r. We have the following laws: 

Coulomb's law for charges Q,i and Q 2̂, dielectric power e is 
given by: 

f = M ? r o (7.1) 
er2 

Newton's law for masses Mx and M2, Newton's constant G is 
writ ten: 

f = - G ^ ί 2 r° , G = 6.66 x 10"8 CGS (7.2) 
r2 

The notation r° represents a unit vector in the direction r . 
Both formulas (7.1) and (7.2) are identical if we assume 

e = - 1 / G = - 1 . 5 x l 0 7 (7.3) 

Newton's attraction corresponds to a large negative dielectric 
constant. We repeatedly stated the need for using positive or 
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negative masses, since we may have positive or negative energies 
and we must keep the mass-energy relation unchanged: 

E = Mc2 (7.4) 

There is only one coefficient M for each particle; this coefficient 
is playing its role in the relation above and also in the inertial law 

f = M y (7.5) 

where y is the acceleration. Figure 7.1 will show the signs of fand 
acceleration y in a variety of conditions for two masses Mx and 
M2 interacting together. 

M|| > |M 2 | 
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>2 

+ 
f2 

IE 

7| 
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FIG. 7.1 
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Figure 7.1 shows how much a " mass plasma " would differ 
from an electric plasma; attractions and repulsions would not 
lead to the same types of mixtures in both cases. Note that the 
acceleration is the same for positive or negative moving objects, 
in accordance with the classical idea of a " field of acceleration." 

3. Some Essential Formulas from Electrostatics 

Let us now rewrite a few classical formulas which we may use for 
electrostatics or gravistatics: 

F = -\V (7.6) 

D = e¥ (7.7) 

V · D = 4πΡο (7.8) 

where Fis the static potential, F is the field, D is the displacement 
and p0 is the mass or charge density. The energy density in the 
field is given by 

(7.9) 

(7.10) 

(7.11) 

The formula for electrostatic energy density (7.9) was already 
used in Chapter 2, where it was shown that the volume integral 
of this density did yield the classical potential energy. The differ-
ence between electrostatics and gravistatics is that a point charge 
Q, may actually exist, while a point mass M is practically impos-
sible. Every mass M is surrounded by an atmosphere of mass 
densities resulting from the energy densities in the field [Eqs. (7.4) 
and (7.9)]. 

Let us first show how formulas (7.11) must be completed and 
corrected when the mass can no longer be considered as infinitely 
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small. We do not want to discuss what may happen within the 
sphere a; this inside problem is a different story and should be 
put aside. So, we choose to consider an empty spherical shell or 
bubble of mass M0. There is no field inside the bubble if the 
mass M0 is uniformly distributed on the sphere, hence no perturbation 
to the usual theory within the bubble. Outside the bubble, Eqs. 
(7.11) can be used as a first approximation and yield an energy 
density and a mass density ^ g [Eqs. (7.9) and (7.10)]. 

1 M2 

g = - (F · D) = -G g - 4 = Φ,ί», for r > a (7.12) 

by the mass-energy relation (7.4). We thus discover an atmos-
phere of negative mass all around the bubble M0 of radius a. 
This atmosphere surrounding M0 is always negative, whatever the 
sign of M0 might be. The total mass Mg distributed in the field is 
directly obtained by integration for the whole space 

G M 2 

Mg= -%~^- (7.13) 
g c* 2a K J 

This formula corresponds to the one giving the electromagnetic 
mass of an electron and represents a very small relative correction 
when | GM0/2c2a | is small. The mass M0 could be measured only 
by instruments located very close to the bubble. At large distances 
r, we measure a total mass 

Aft =M0+Me+ · · · = M 0 ( l - ^ ° + 
GM0 

2c2a 
< 1 

(7.14) 

If I GM0/2c2a \ happens to be large, we have to consider higher 
approximations. Let us immediately notice the nonlinear character 
of gravistatics and the dissymmetry between positive and negative masses, 

4. Complete Gravistatic Field with Surrounding 
Mass-Density Distribution 

We may easily discover the fundamental laws of gravistatics. Let 
us start from the energy-density and mass-density formulas (7.3), 
(7.4), (7.10): 
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GD2 

Wg = _ ^ 1 _ (7.15) 

and combine it with (7.8) to obtain 

V · D = 477^g = -\gD2 with g = - (7.16) 
c2 

This is our fundamental nonlinear law for gravistatics. Let us use our 
condition for spherical symmetry, assuming D to be Dr along the 
radius: 

^ \ ^ D T ) = - k £ > r 2 (7.17) 

We note that r2Dr represents the total mass Mr within a sphere 
r [seeEq. (7.11)] 

dM M2 

^F = -\g~, Mr=r*Dr (7.18) 
dr r2 

Let us use the reduced mass mr, which was defined in Eq. (4.3) 

mr = % Mr = gMr = gr*Dr (7.19) 
c 

and we have the equation 

dmr m2 

~dr~ ~ ~ 2r2 (7.20) 

Integration yields 

--4+± (7-21) 
mr 2r 2a V ' 

where a is an integration constant, hence 

2m 2a 
r-oc r(r-oc) 

At large distance, we obtain Newton's field for the total mass m\ 
(bubble mass ra0 plus field mass Wf) 

^ t = m0+mt = 2a, r > a 

but (7.21) yields 
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2a<x m\ 

a-<x 1 - τηχβα 
(7.22) 

This is the correct answer, while our Eq. (7.14) gave only a first 
approximation: 

mt 

1 -m0/2a 
(7.14)' 

According to the correct formula (7.22) we note that the theory 
diverges when 

a = mt/2 (7.23) 

We shall discuss this result, which corresponds to conditions for 
gravitational collapse, in the next section. 

5. Discussion 

Before starting the discussion we must make an important remark: 
The mass distributed in the field is always negative, since gravitation 
corresponds to a negative dielectric constant [Eq. (7.3)]. Hence: 

mt~m0 = mi < 0 (7.24) 
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where mi is the mass in ihe field. Using Eq. (7.22) we obtain 

mt~m0 = - — —, hence m0mt > 0 (7.25) 
2a 

The mass m0 of the bubble core and the total mass πΐχ always have 
similar signs. Fig. 7.2 visualizes the relation between m0 and mt; 
the curve is an equilateral hyperbola, but only the following 
branches have a physical meaning: 

branch I m0 > 0, mt > 0, positive masses 

branch II m0 < 0, mt < 0, negative masses 

while branch I I I , with m0 < 0 and mt > 0, has no physical 
meaning. 

The strong dissymmetry between positive and negative masses 
is very striking. For positive masses we see that the total reduced 
mass mt cannot exceed 2a 

mt ^ 2a, for m0 -> oo (7.26a) 

This is again condition (7.23). 
For negative masses we have a very different situation: 

wt-> - o o , m0 ^ -2a (7.26b) 

These curious limitations require closer examination. 
Let us now come back to condition (7.23) giving the critical 

relation between mass mt and the radius a of the bubble. It indi-
cates gravitational collapse when the radius a equals one-half of the 
total mass mt (the mass of the central bubble plus the distributed 
mass in the surrounding field). 

We may compare this result with the values computed from 
Einstein's theory, which were summarized in Chapter 4 [Eqs. 
(4.3-8)]. Einstein does not discuss the distribution of mass between 
the central core and the field, and his mass m corresponds to 
our mt. 

Furthermore, Einstein does not specify the type of coordinates 
to be chosen, and even takes pride at this lack of definition. We 
emphasized the need for such a definition before making any 
attempt at an experimental check, and we assumed isotropic 
Euclidean space. This corresponds to formulas (4.5) and (4.6), 
where we also obtain a critical radius of \m. There is complete 
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agreement between our elementary discussion and Einstein's 
solution for Euclidian space. 

The practical discussion of this chapter answers the question 
raised in Chapter 4 and strongly suggests that an isotropic 
Euclidean space with a variable light velocity should be the model 
closest to experimental physical conditions. 

Fock's preferred frame of reference (4.7) and (4.8) does not 
agree with our physical discussion. 
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Chapter 8 Remarks and Suggestions 

1. The Meaning of a Spectral Line 

The question as to the meaning of a spectral line has been asked 
often and different answers have been given. A spectral line de-
fines a wavelength in optics, and for many years the only methods 
of observation were based on interference phenomena. Optical 
textbooks spoke of " frequency " and gave figures in reciprocal 
centimeters because of the uncertainty of the light velocity c. As 
we saw in Chapter 3, spectral lines are also now being used to 
define an actual frequency in reciprocal seconds, and we empha-
sized in the Introduction the very ambiguous present situation. 
The unit of length is officially based on a spectral line of krypton-
86, while the second of time is defined by a spectral line of cesium. 
So, if one wants to measure the velocity of light c one just has to 
observe the ratio of frequencies (or wavelengths) of krypton and 
cesium! This is a curious, illogical statement in science. 

We discussed the gravity red shift in Chapter 6, assuming that 
h and c were actual constants. But many authors agree with 
Einstein and claim that the velocity of light c depends upon the 
gravity potential in every static problem where such a potential 
can be defined; hence we must inquire: Is the red shift due to an 
increased wavelength (at constant frequency) or shall it be 
construed as a decreased frequency? 

We stated our results in Chapter 6 as if they corresponded to 
an actual change of frequency, and we found this point of view 
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very difficult to explain physically. It would be much easier to 
understand a change in the light velocity c, resulting in a changed 
λ at a constant frequency v. 

This, independently of any theory, is actually an experimental 
fact and was recently verified by Shapiro (1968) in a brilliant 
series of observations where a very accurate laser beam was re-
flected on the planet Mercury and came very close to the sun on 
its way back to earth. The beam traveling near the sun was pro-
pagated more slowly, and excess delays of 125 microseconds were 
clearly observed. This experiment clearly shows that the velocity 
of light in the neighborhood of the sun is smaller than at large 
distances. 

In connection with these problems, we must recall a very inter-
esting paper by Lucas (1966), where he discusses how a number 
of physical properties might be modified by a change in the 
gravity potential. Lucas makes the very interesting assumption 
that h/c2 is an invariant, thus keeping constant the ratio of mass to 
frequency. Such an assumption has the significant advantage of 
keeping unchanged our discussion of Section 6.2 about Pound's 
experiments. 

2. General Gravitation Theory 
and Experiments 

After developing his general relativity theory, Einstein predicted 
some effects that might be tested by observations. Many attempts 
were made since that time, and few practical results were ob-
tained. First of all, let us state clearly that such predictions are 
not specifically tied up to Einstein's theory; very similar predic-
tions with only slight differences of order of magnitudes obtain 
similar results for any computation including the mass-energy relation. 

For instance, Einstein predicts the deflection of a light ray passing 
near the surface of the sun, but we obtain a similar result if we 
consider a light ray as a beam of photons hv with masses hvjc2. 
Only the numerical coefficient is different, and Einstein's pre-
diction is twice as large as that in the computation with photons. 
Here the experimental results are actually very poor, with errors 
of 100% magnitude; a detailed discussion of older results may 
be found in Ghazy's book (1930), and more recent experiments 
were no better; looking candidly at these observations, one feels 
that very large sources of error are obviously playing a substantial 
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role, and our present knowledge of the turbulent flow in the solar 
atmosphere yields the most probable explanation. The Shapiro 
(1968) experiment is certainly safer than the deflection of light 
rays. 

Let us emphasize the importance of the solar wind that corres-
ponds to ten million tons of matter annihilated per second and 
radiated away! 

The advance of the perihelion of Mercury (43 seconds per century) 
was hailed as a wonderful check with a theoretical prediction of 
42" 6, but here again let us refer to Chazy (1930) who found a 
number of other examples in the solar system where Einstein's 
predictions conflict with experiments. It is hard to believe seri-
ously in a coincidence of less than one second for Mercury, while 
so many other examples give large errors and even opposite signs! 
Let us here candidly admit that there must be many other un-
known factors involved. The computations of Chazy refer to the 
motions of perihelions of four planets and similar motions for a 
number of satellites orbiting around planets (e.g., the moon). 
Errors of at least five seconds per century seem to be the inevitable 
limit in these very difficult computations. Einstein's theory yields 
about \ of the advance of perihelion of Mars and practically 
nothing for Venus. Let us add that Dicke's discovery of the 
oblate shape of the sun leads to perturbations that definitely 
destroy the agreement about Mercury. The question cannot be 
considered completely settled. 

3. Bridgman's Reappraisal 
of Relativity 

All the discussions of this book were strongly influenced by Bridg-
man's ideas and his emphasis of the constant need for interrelation 
between theory and experiment. This viewpoint coincided with 
that of the present author, and was in complete agreement with 
the traditional thinking of a large school of French scientific 
philosophers, especially Berthelot (1863), Curie (1908), and M. 
Brillouin (1935). 

We must now reread and quote from the last book of Bridgman 
(1962), published after the scientist's untimely death, which con-
tains a very thorough reappraisal of relativity from a " sophisti-
cated primary " viewpoint. On many occasions, we discover that 
Bridgman came very close to our line of discussion, and we hope 
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to show that this book may be considered an extension of 
Bridgman's methods and ideas. 

Bridgman starts with the Lorentz equations in his first chapter, 
for reasons of " convenience," and immediately states his belief 
that the Lorentz formulas represent only a " practical character-
ization " of special relativity. We agree with this distinction and 
tried to distinguish sharply between both points of view (the 
classical and ours) when we specified the special postulate re-
quired to get rid of first-order Doppler effects and keep only the 
second-order effects of Lorentz (see Chapter 5). 

Bridgman very clearly discusses the problem of setting clocks 
at a distance and " spreading time over space." Regarding a 
penetrating appraisal of Reichenbach (1958), it is interesting to 
note how Bridgman maintains the validity of the naive and old 
method for setting clocks at a distance by transporting a clock 
from one place to another. He shows how it can be correctly de-
fined to agree completely with the discussions of Einstein and 
Reichenbach. 

Let us also note how cautiously Bridgman speaks of Galilean 
frames (pp. 78-79): 

A Galilean frame is a rigid physical scaffolding, to which a 
coordinate system can be attached... . The members of the 
frame are free from internal stresses... . Associated with the 
particle (at the origin), there has to be some mass which serves as 
the origin of the primitive set... . If we expect to use the 
framework as an anchorage for the arbitrary forces we want to 
apply to the various particles to induce in them any desired 
state of motion, then we shall obviously have to make the frame 
massive as well as rigid. " Massive " means much heavier than 
any of the particles we expect to put into interaction with [the 
earth, with some small corrections]. 

Bridgman's statement completely agrees with the viewpoint we 
presented in Chapter 4 of this book. 

There are many illuminating remarks in Bridgman's booklet, 
and every physicist will enjoy reading it and commenting on its 
suggestions. Among many other bright ideas, let us point to a 
very curious one (pp. 159, 160). Bridgman compares the electro-
magnetic theory, with its constant light velocity c, and classical 
mechanics, where a " free " moving massive particle, in a Gali-
lean frame of reference, maintains a constant given velocity v for any 
time. Both results strike him as analogous and simply wonderful! 
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He wonders whether there might be some deep similarity, some-
thing analogous to the electromagnetic field equations, but applicable to 
inertial matter! He is tempted to believe that some new physical 
effect may have escaped detection. In electromagnetism, one 
needs two vectors E and H ; assuming the inertial E to correspond 
to gravitation, what should be the role of the inertial H ? 

Bridgman does not elaborate, but despite his proverbial 
cautiousness, he is not afraid of stating such a fantastic suggestion, 
and this situation is worth scrutinizing. This may serve to intro-
duce Carstoiu's investigation in the following section. 

4. Carstoiu's Suggestions 
for Gravity Waves 

Carstoiu (1969) starts from the discussion of Brillouin and Lucas 
(1966) that was restated and corrected in Chapter 7. We empha-
sized the startling similarity between electrostatics and equations 
of a static gravity field F (gravistatics). In order to discuss non-
static problems, Carstoiu assumes the existence of a second gravi-
tational field called the gravitational vortex Ω; both fields are supposed 
to be coupled by equations similar to Maxwell's equations, and 
obtain a propagation velocity c equal to the velocity of light. 

As is well known, Maxwell's equations contain two constants, 
the dielectric constant ε and the permeability μ, related by the 
condition 

ε/χ<;2 = 1 (8.1) 

thus yielding a velocity c for wave propagation. 
Accordingly, Carstoiu introduces two gravitation constants sg 

and /xg. Let us take for the eg the value we selected in Eq. (7.1): 

eg = - 1 / G (8.2) 

where G is Newton's gravitation constant. This leads to selecting: 

Mg = -G/ i» (8.3) 

in order to satisfy condition (8.1). Actually, Carstoiu uses a 
different set of unities that result in replacing our G by 4πγ, and 
he calls G the gravity field that we call F. Rewriting Maxwell's 
equation, Carstoiu obtains: 
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c u r I F - - 3 " c u r l l l - ^ - ^ J , (8.4) 
at CL at CL 

V F = - Gpg, V · Ω = 0 

where pg is the mass density, J g the gravitational current, and Ω 
the gravitational vortex. Carstoiu discusses the possible role of his 
gravitational vortex on the stability of rotating masses and a 
variety of problems in cosmogony. 

Let us consider again the nonlinear problem discussed in 
Chapter 7; we find a similar situation in the propagation equa-
tion. The energy density in the field contains terms in | F |2 

similar to Eq. (7.10) and also terms in | Ω |2 for gravitational 
vortex. Energy density yields new mass density, hence an addi-
tional padd term: 

1 | F | » + C « | f l | » 
P a d d = ~G? 8ii (8>5) 

and we end up with nonlinear equations for gravity propagation. 
This />add always represents negative mass, as noted in Chapter 7. 
This extension of Carstoiu's theory opens a large field for investi-
gation. What is the meaning of the gravitational vortex and what 
sort of role could it play? How and where could it be observed? 
Let us only state, for the moment, that this new line of investi-
gation may not be very far from Einstein's equations of gravity 
propagation, since Einstein's equations have been reduced by 
some authors to a schema similar to (8.4). The reader can refer 
to Carstoiu's papers for further investigation. 

Let us indicate here that the similarity of Carstoiu's gravita-
tional equations with Maxwell's electromagnetism leads to some 
curious suggestions: Both types of waves are transverse and pro-
pagate with the same velocity c, a coincidence that should 
facilitate a strong interaction if there happens to be any possibility 
for intercoupling; and such a possibility is immediately obvious. 
Electromagnetic fields create an energy density, according to a 
classical formula 

JP εΕ2 /χΗ2 

«EM = -5— + - 5 — = PEM, add C*. (ö.OJ 
θ7Γ ο π 

where E and H represent the electric and magnetic fields, res-
pectively. This electromagnetic energy density <?EM represents a 
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positive mass-density PEM, add to be added to our previous 
negative /oadd of Eq. (8.5), and this mass-density distribution in 
any type of electromagnetic field must generate new gravitational 
fields. Thus, we have a very clear indication of a simple coupling 
between electromagnetism and gravitation, a problem open for 
further discussion. 

After writing the papers just discussed here, Carstoiu discovered 
a very extraordinary note of Heaviside (1893, 1950), where he 
suggests for gravitation a set of equations very similar to Maxwell's 
electromagnetic equations and Garstoiu's formulas. Heaviside 
shows that these equations require the introduction of a second 
field, analogous to the magnetic force; this is Carstoiu's vortex Ω. 
It is very strange that such an important paper had been practi-
cally ignored for so many years, but the reader may remember 
that Heaviside was the forgotten genius of physics, abandoned by 
everybody except a few faithful friends. 

5. Wanted: A Graser! 

We are reaching the end of this essay, and after discussing so many 
problems, both theoretical and experimental, we must come to a 
conclusion: What Einstein's genius could not achieve, we doubt 
that any modern scientist, even another genius, can achieve. We 
have accumulated since the beginning of this century an enormous 
amount of knowledge; most of the discoveries were of an experi-
mental nature, and theory could proceed only after a firm basis 
of empirical data had been built. When we consider gravity, its 
nature, its propagation, we must candidly admit that the progress 
was almost nil. We know little more than a century ago, " because 
measurable effects happen to be incredibly small " ; since we 
cannot change their order of magnitude, the only thing we can 
do is to change our procedure of observation. 

Radio was at a standstill until amplification was invented by 
De Forest; optics progressed slowly until Townes invented masers 
and lasers were built by Kastler. Who will now build a graser, a 
powerful amplifying device for gravity waves ? When and if our 
observations reach a power one million times greater than today, 
we should be able to measure gravity waves, their frequencies, 
their velocities, and how they propagate. 

We shall know whether these waves be longitudinal (like sound 
waves in gases) or transverse (Maxwell's equations), or mixed, 
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tensorial waves. Many physicists had in mind longitudinal waves, 
while Heaviside, Bridgman, and Carstoiu suggested transverse 
waves similar to electromagnetic waves. We should be able to 
answer at least this question! 

With a graser we might ascertain whether the velocity of gravity 
waves actually equals the velocity of light. If gravity waves hap-
pened to propagate more slowly than c, we should observe gravity 
shock waves for all particles moving with velocities close to c, and 
there are many such particles. A number of important problems 
could be solved, and many new roads open. Such a discovery 
would spark a big new chapter in physics, and engineers might 
even build gravity transmitters and receivers competing with 
radio! In scientific research, there is no substitute for observation. 
What we need is a graser! 
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