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ABSTRACT 
The background of microwave radiation is known to be remarkably uniform over the sky, although the 

regions giving rise to the radiation in widely separated elements of solid angle have, according to the usual 
cosmological theories, always been out of communication with each other. Using a new approach to the big- 
bang cosmologies, an explanation of this uniformity is given. 

The intensity of the background appears to be related to the energy of conversion of hydrogen to helium 
within galaxies. Yet this circumstance is regarded as coincidental in the usual theories. Here it receives 
explanation. 
Subject headings: cosmic background radiation — cosmology 

I. THE MASS FIELD 

A mass field at a general point ^ can be defined by 
a summation over all particles, 

M(x) = 2 J A)eAda , (1) 

the point A being located at the element da of the 
world line of a typical particle, denoted by a. The 
scalar Green’s function G{x, A) will be defined in a 
later section in terms of a certain wave equation, while 
the dimensionless quantity eA is a coupling constant. 
Writing the coordinate displacement along da as da\ 

da2 = gikdaidak , (2) 

the metric tensor of the Riemannian space being gik. 
The situation is illustrated in figure 1. 

Particle a 

Fig. 1.—The function G(x, ^4), taken for all elements on the 
paths of all particles, builds the mass field M(x). 

The mass mb(B) of a particle b, at a point B of its 
path, is then taken to be given by 

mb(B) = eBM(B) = «b 2 / G(B’ A>Ada > (3) 

the field M coupling to the particle through the con- 
stant eB. We shall regard eA, eB as simple numbers, 
taking each of them to be either e ( > 0) or — e, with e 
a fixed number. That is to say, all our “particles” are 
structureless and similar to each other. An attempt 
can be made to represent “real” particles by taking 
€A, €B to be matrices, with the product €A»eB an in- 
variant with respect to transformations in the abstract 
space that determines the structure of the particles. 
However, such a development involves problems 
which go beyond the scope of this paper. 

As in electrodynamics, we therefore have both plus 
and minus contributions to the mass field. But whereas 
in electrodynamics the strength of the forces is so great 
that plus and minus charges are everywhere distributed 
with nearly equal densities, we contemplate here that 
large scale aggregates can exist some of which make 
only plus contributions, others making only minus 
contributions, as indicated schematically in figure 2. 
The regions of figure 2 are to be thought of as large 
compared with the range of astronomical observation. 

Fig. 2.—Spacetime is divided into a number of four- 
dimensional volumes which make plus and minus contribu- 
tions to the mass field. A plus aggregate is bordered by minus 
aggregates, and vice versa. 
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Cosmological distances, as ordinarily understood, fit 
into a single aggregate. Our experience in astronomy 
is therefore confined to one sign for the contributions 
to the mass field. 

Averaged on a scale much greater than that of 
practical astronomy, plus and minus contributions are 
taken to be equally important, so that M(x) will 
sometimes be plus and sometimes minus, depending on 
the position of the point x in relation to the aggre- 
gates. Hence there will be three-dimensional surfaces 
in spacetime on which M(x) = 0, separating four- 
dimensional regions with M > 0 from regions with 
M < 0. Figure 2 can be reinterpreted as a schematic 
representation of such a set of surfaces. 

It is worth noting that M < 0 does not necessarily 
require particle masses to be negative, since the par- 
ticle couplings may take the same sign as the mass 
field, in which case particle masses are never negative. 

The disposition of the plus and minus aggregates is 
not arbitrary, but must satisfy the gravitational equa- 
tions—as the disposition of plus and minus charges 
satisfy the electrodynamic equations. The gravitational 
equations are determined from an action S defined by 
a summation over all particles 

S = -]> J WatXMa, (4) 

by requiring SS = 0 to the first order in small quan- 
tities for an arbitrary variation gik gik + §gik of the 
metric tensor. The details of the derivation of the 
gravitational equations, which will not concern us 
here, have been given by Hoyle and Narlikar (1974). 
The situation differs from the Einstein theory in that 
no term of the form 

jjLj R(-gy>wx (5) 

appears in equation (4). Yet with an appropriate 
choice for the constant e (taking the place of a choice 
for G) the present theory contains the gravitational 
equations of the Einstein theory, as will be seen below. 

II. LOCAL MEASUREMENTS OF PHYSICAL QUANTITIES 

The following remarks refer to a local situation in 
which the geometry is taken to have the flat-space 
Minkowski form. 

There is no more basic way for measuring time 
intervals than by counting the electromagnetic oscilla- 
tions of a monochromatic wave emitted in a suitably 
chosen atomic transition from atoms that are station- 
ary. The transition between the hyperfine levels of the 
ground state of 133Cs is used in practice. And, by 
generating standing waves inside a box with reflecting 
walls, static spatial displacements can be determined, 
simply by counting the number of standing waves 
between specified points. 

The determination of the instantaneous velocity of a 
particle, or of the speed of light, involves the measure- 
ment of both a time interval and a static spatial dis- 
tance. It is important to notice that provided light 

moves through a vacuum, and provided electro- 
magnetic radiation from the same atomic transition is 
used to measure both time and spatial intervals, then 
inevitably the speed of light is found to be unity. It is 
only when the atomic transition chosen to determine 
intervals of time is different from the transition chosen 
to determine spatial intervals, or when quite arbitrary 
multiples of the atomically determined time and space 
units are used, that the speed of light can be anything 
other than unity. 

The 2p10 to 5db transition of 86Kr is used in practice 
to determine spatial distances, the meter being defined 
as a multiple 1650763.73 of the resulting spatial unit. 
The second is defined as a multiple 9192631770 of the 
time unit given by 133Cs. When we say that the speed 
of light is 299792500 meters per second, we are simply 
stating the ratio of these two practical measuring 
scales. An infinity of such arbitrary prescriptions 
could indeed be devised, all leading to different 
numerical values for the speed of light, each expressing 
the arbitrariness of the procedure. When the natural 
space and time units given by the same monochro- 
matic wave are used, however, the speed of light is 
always unity. We shall take it to be so in the following 
discussion. 

Because the charge e and the mass m of a particle 
are usually first encountered through the study of 
classical physics, we tend to think of e and m as 
having an existence apart from the Planck constant h. 
But the electronic charge e always occurs in quantum 
mechanics in the fine-structure combination, e2jh, and 
the particle mass m occurs either in the ratio mjft or as 
a ratio with respect to the mass of another particle, 
like melmp for the electron and proton masses. Every 
formula determining an experimental result can be 
constructed according to quantum mechanics from 
powers of e2¡h (and from dimensionless constants of 
similar form for the weak and strong interactions), 
from powers of rae//z, mP!h,..., for various particles, 
and from either known or calculable dimensionless 
numbers—the latter usually involving matrix ele- 
ments. Since classical physics is contained within 
quantum physics, e and m cannot therefore be 
separated from h, except by absorbing ft into each 
particle mass and into e2 (and the other coupling 
constants). This can be done by writing # = 1 in all 
the usual formulae. Then e2 becomes the fine-structure 
constant, e2 = 7.297351 x 10“3, and all particle 
masses have the dimensionality of an inverse length— 
the Compton wavelength of a particle being just the 
reciprocal of its mass. 

It will be clear then, that vague suggestions to the 
effect that perhaps the speed of light might be variable 
from place to place, or that Planck’s constant might be 
variable, are without meaning. Taken in a sensible 
way, both Planck’s constant and the speed of light are 
unity, and they are so everywhere, provided that 
whatever spacetime location we are concerned with we 
elect to use flat Minkowski space for the local geometry. 

The oscillation frequency of radiation emitted by 
an explicit transition is determined by the various 
particle masses—electron, proton, neutron—and by 
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the structure of the atom itself, involving the dimen- 
sionless fine-structure constant and in some small 
degree the nuclear couplings also. Provided all dimen- 
sionless quantities are taken to be fixed numbers, 
including particle mass ratios, the radiation frequency 
is determined by these fixed numbers and by any one 
of the particle masses, say that of the electron, me. The 
latter may be considered to be variable with respect to 
the spacetime location, in accordance with the ideas of 
the preceding section, but the dimensionless quantities 
are not taken to be variable. 

Intervals of time and space can therefore be con- 
sidered to be measured with respect to a unit deter- 
mined by rae

-1. Moreover, the dimensionalities of all 
physical quantities can be expressed as some power of 
me, me

n say. As examples, pressure and energy density 
have n = 4; current density and surface tension have 
« = 3; luminosity, force, and the electromagnetic 
field have n = 2; energy, mass, and frequency have 
/? = 1 ; length has n = —1. 

Every experiment consists, when its procedures are 
analyzed, in the counting of a dimensionless number, 
which is always made up as a product of physical 
quantities and their inverses in such a way that the 
sum of the dimensionalities add to zero. No physical 
quantity with ft ^ 0 is ever measured, except as a ratio 
to another quantity of the same dimensionality. Hence 
it follows that, so long as me(x) is only slowly variable 
with respect to the spacetime position *, as would be 
the case if me were to vary only on a cosmological 
time scale, no local laboratory experiment can detect 
the variation. 

It is only when a dimensionless number can be 
measured involving two widely separated locations 
that a variation of me is in principle detectable. For 
example, by observing light from a distant object it is 
possible to determine frequency ratios of spectrum 
lines emitted from similar atoms, some present in the 
object, others in the laboratory. This observation 
depends directly on the ratio of me in the local 
laboratory to me in the object. Such a comparison of 
me is blurred, however, by the circumstance that the 
large-scale spacetime geometry can also affect the 
observed frequency ratio—in a manner familiar from 
the usual cosmological studies. This apparent ambi- 
guity between the effect of world geometry and the 
effect of variable particle masses can be considered 
with precision, however, through the concept of 
conformal invariance. 

III. CONFORMAL INVARIANCE 

Consider a scalar function of position Ü(x), with the 
property that Q is never infinite and never zero. For 
definiteness, let Q be positive. A transformation from 
the Riemannian space 

ds2 = g^dx^x^ (6) 
to the space 

ds*2 = Q,2gikdxidxk (7) 

is known as a conformal transformation. Notice that 

such transformations are not to be confused with co- 
ordinate transformations. A coordinate transforma- 
tion never changes the length ds associated with the 
displacement between neighboring points, whereas the 
conformal transformation from equation (6) to (7) 
changes the length associated with dxi from ds to 
ds* = Qds. 

Again for definiteness, take dx{ to be timelike. By 
choosing locally flat space, and by arranging for dx{ to 
be along the time axis, we can seek to determine ds, in 
the manner discussed in the previous section. Radiation 
from stationary atoms determines a time unit of the 
form 

dimensionless constant 
me 

(8) 

the numerator here being determinable through the 
evaluation of the matrix element associated with the 
atomic transition and through known fixed constants. 
If the geometry is given by equation (6), the number 
determined in this way for a physically specified dx1 is 
equal to 

meds 
dimensionless constant (9) 

Hence, with the denominator of equation (9) known, 
the dimensionless product meds is determined. Notice 
that ¿fo is not itself determined, since we do not know 
me in terms of any unit more fundamental than the 
electron mass itself. 

Suppose now that we both change the geometry 
from equation (6) to (7) and also change me to a dif- 
ferent mass, me* say. Then the experimentally deter- 
mined number associated with the same physically 
specified displacement dxl must be equal to 

m*ds* 
dimensionless number ’ 

(10) 

the denominator here being the same known constant 
as before. It follows that the product m*ds* must be 
the same as meds, so that to avoid contradiction m* 
has to be chosen so that 

m* = Q 1me. (11) 

Provided we associate me with the geometry (6) and 
m* = £l~1me with the geometry (7), spacetime 
measurements cannot distinguish between the two 
geometries. 

Is there any other way in which we might distinguish 
these two possibilities ? At first sight there might seem 
to be ways. Suppose, for example, that we attempt to 
determine the electromagnetic influence of particle è 
on particle a. For me and the geometry (6) we have1 

D{magikliä) = eaFmik'dak (12) 

1 The notation D in equation (12) denotes the part of the 
change of magikdaklda that is due to the electromagnetic field. 
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for an element dak of the path of particle a. Here ea is 
the charge of particle a, ma is its mass, da is the element 
of length associated with da1 taken with respect to (6), 
and Fib)

ik is the electromagnetic field of particle b, 
determined by 

-4*ebj ^X
g(B)ßdb‘, (13) 

F(b\k;i + F%Uk + F%j:i = 0, (14) 

the covariant derivatives in equations (13) and (14) 
being determined with respect to gik as metric tensor, 
S4(a: — B) being the four-dimensional Dirac delta 
function, and B being a point at the element dbl of the 
path of particle b. The left-hand sides of equations 
(13) and (14) are evaluated at a general field point x. 

The corresponding equations for the geometry (7), 
involving the starred particle mass, raa* = D_:Lma, are 

D(m*œgik ^ = eaF*(b)
ikdak , (15) 

F*ib)ik
;k = —4ireb J i§_p(^)F dbi ’ (16) 

F*mik-,i + F*^^ + F*ib\J]t = 0, (17) 

the covariant derivatives in equations (16) and (17) 
being evaluated with respect to Q>2gik as the metric 
tensor, and da* being the length associated with da1 

also taken with respect to £l2gik as the metric tensor. 
Do equations (12) and (15) give any difference in the 
motion of particle a? 

With ma* = Q,~1ma, we have 

dak * dak 

a? (18) 

so we are concerned on the left-hand sides of equations 
(12) and (15) with varying the same quantity. At first 
sight, we might expect the right-hand sides of these 
equations to be different, since apparently different 
fields F{b)

ik and F*{b)
ik are involved. But it turns out 

from equations (13), (14), and from (16), and (17), that 
F^fo — F*ib)

ik, and in fact the attempt to distinguish 
between the geometries (6) and (7) fails. The result 
F(b)

ik = F*ib)
ik is expressed by saying that Maxwell’s 

equations are conformally invariant. 
The present considerations are classical, but the 

same situation arises also in quantum mechanics [for 
details, see Hoyle and Narlikar (HN) 1974]. 

The possibility of distinguishing between (6) and (7) 
can therefore depend only on gravitation. Yet an ex- 
tensive consideration of gravitational effects (again for 
details, see HN 1974) has shown that, provided the 
function G(x, A) in equation (1) satisfies the scalar 
wave equation 

UxG(x, A) + \R(x)G(x, A) = > (19) 

gravitational effects also fail to distinguish between 

(6) and (7). Indeed, the adoption of (19) forces (11), 
m* = to hold good. Thus the adoption of 
equation (19) removes the need to assume (11). 

The failure to distinguish between the geometry (6) 
associated with me and the geometry (7) associated 
with me* is total. No distinction is possible through 
any observation or through any experiment. 

We now take the view that to have attempted to dis- 
tinguish between {6) and (7) was an irrelevant problem. 
It makes no physical difference whether we choose (6) 
or (7), provided we relate the particle masses in the 
two geometries through equation (11)—or what is the 
same thing, through (1), (3), and (19). All geometries 
of the form (7), given by various choices for the 
function 0(x;), are physically equivalent to one 
another. We describe this situation by saying that our 
system of physics is conformally invariant. 

It may be noted that (19) is similar in many respects 
to the wave equation satisfied by the electromagnetic 
potential, except that instead of being a vector, equa- 
tion (19) is scalar. Like the electromagnetic wave 
equation, (19) has advanced and retarded solutions, 
say GrQfx, A), G^v{x, A). We regard G(x, A) as being 
uniquely determined by choosing the symmetric form, 
given by 

G{x, A) = %[Gret(x, A) + ^advC*'? A)]. (20) 

IV. THE EINSTEIN CONFORMAL FRAME 

Within a classical framework, suppose we attempt 
to make a complete physical solution for an assigned 
set of particles, which we regard as constituting the 
universe. The number in the set can be as large as we 
please. For each such particle, say a, we describe the 
path by four functions a^a), where a is to be a measure 
of length along the path taken from a particular 
starting point. The determination of a is to be with 
respect to a so-far unknown metric tensor gik(x). 

At our disposal in this enterprise we have electro- 
magnetic equations like (13), (14), for every charged 
particle; we have gravitational equations based on the 
action (4); and we have equations (1), (3), and (19) for 
determining the particle masses. Note that dynamical 
equations like (12) are contained within the gravita- 
tional equations, and so do not need to be considered 
separately. Our aim is to obtain information about the 
metric functions gik(x) and also information about the 
functions a^a) describing the paths of the particles. 

From what was said in the preceding section we 
must expect to fail in an attempt to determine a 
unique metric tensor. We can only hope to obtain 
gik(x) to within a conformal transformation. That is to 
say, the equations at our disposal cannot serve to 
distinguish between gik(x) and &2(x)gik(x). This ambi- 
guity will show itself through the whole scheme of 
physical equations being self-consistent with respect 
to an infinite family of conformally related geometries. 

Suppose we have determined a particular metric 
tensor gik(x) with respect to which all our equations 
are consistent, and write me(x) for the function we 
have found to represent the electron mass. Then we 
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know that, provided D(x) is neither infinite nor zero, 
g*ik(x) = Q2(x)gik(x), me*{x) = must 
also be consistent with our equations. Choose 

Q(x) = (nonzero constant) " ^(x), (21) 

in which case me*(x) becomes just the constant ap- 
pearing in equation (21). Hence even if our first con- 
sistent solution for the universe did not lead to an 
electron mass independent of the position of x, by a 
conformal transformation we can arrive at such a 
solution. This particular solution will be referred to as 
the Einstein conformal frame, because when particle 
masses do not depend on the position of x, the 
gravitational equations based on (4) reduce to the 
Einstein equations (again for details, see HN 1974). 

At this stage it may be wondered just what has been 
achieved by the whole of the above discussion. If all 
conformal frames are physically equivalent, and if one 
of them is the Einstein theory, then nothing physically 
different from the Einstein theory has apparently been 
achieved. Yet one crucially important difference has 
in fact been achieved. The conformal transformation 
(21), required to pass to the Einstein frame from a 
general frame in which me(x) is variable, cannot be 
used at points x where me(x) = 0. This means that 
although the Einstein frame can be used consistently 
within any one of the regions of figure 2, it cannot be 
used to pass from one such region to another. 

The usual mysteries concerning the so-called origin 
of the universe begin now to dissolve. In the usual 
cosmological discussions based on the Einstein frame 
there is no means for getting beyond the boundary of 
“our aggregate,” which has therefore come to be 
regarded as a metaphysical “origin” for the universe. 
The metric collapses in the Einstein frame at points x 
such that me(x) = 0, because D(x) given by (21) is then 
zero, so that = Q2(x)gifc(x) = 0 at all such points. 
Yet there is no requirement for gik(x) to be zero. 
Conformal frames exist that can carry us smoothly 
across the zero surfaces of figure 2. 

In order to understand the universe, we need to 
connect all the regions of figure 2 into a consistent 
whole. We shall see below, for example, how it is 
possible to understand the existence of the microwave 
background in terms of such a connection. In this we 
must avoid, for the reasons just stated, the use of the 
Einstein frame. 

V. THE FORM OF THE SOLUTION NEAR A SPACELIKE 
SURFACE OF ZERO MASS 

In this section we shall see how the usual cosmo- 
logical symmetry postulates of homogeneity and iso- 
tropy can be replaced by an interpretation of the 
concept of being “near” to a spacelike surface of zero 
mass. We shall find the geometrical structure in such 
a locality to be of the form which is usually referred to 
as the Einstein-de Sitter model (& = 0 in the usual 
notation). To make easier the relation to the usual 
discussions, we begin by working in the Einstein 
conformal frame. This will be permissible because in 

665 

these initial considerations we shall not attempt to 
cross a surface of zero mass. 

By taking geodesics normal to the zero surface, 
coordinates can be set up which enable the line element 
to be expressed in the form 

ds2 = dt2 + gccßdxadxß ; a, ß = 1, 2, 3 , (22) 

the spatial coordinates being x1, x2, x3, and the time 
coordinate, x4 = t, being measured along the geodes- 
ics. As in the usual discussion, the energy-momentum 
tensor is represented in terms of a smooth fluid 
low-pressure approximation, 

= , (23) 

a^a) being the path of a typical element of the fluid. 
Close enough to the zero surface, and over sufficiently 
small ranges of x1, x2, x3, the fluid density p can be 
considered to be a function of t only, while the ele- 
ments of the fluid can be taken to follow parallel paths 
with da1 ¡da as the tangent vector. 

By the concept of closeness to the zero surface we 
also mean that variations of the metric functions gaß 
are much more markedly dependent on t than on 
x1, x2, x3. Important consequences then follow from 
neglecting the weak variations of gaß with respect to 
-y-1 v3 •/V 2 2 -A • 

It can be shown that 

R*a-ig4aR = 0; a =1,2,3. (24) 

Hence the gravitational equations, which take the 
usual form, Rik — %gikR = — i<Tik, in the Einstein 
frame, require 7^ = 0; a =1,2,3, whence it is 
easily shown that 

^■=0; «-1.2.3- (25) 

The gravitational equations require the path of a 
typical fluid element to be normal to the zero surface. 

Next, it can be shown that by a suitable choice of 
spatial coordinates, say x1 = x, x2 = y, x3 = z, the 
off-diagonal components of ga/? can be made zero, and 
the diagonal components can be made equal, 
gn(0 = £22(0 = £33(0 = - ß2(0 say. Close enough 
to the zero surface the line element can therefore be 
expressed in the form 

ds2 = dt2 - Q\t)[dx2 + dy2 + dz2]. . (26) 

Moreover, the gravitational equations also lead to 
Q2(t) cc tél3, and (26) takes the familiar form of the 
line element of the Einstein-de Sitter cosmological 
model. This result has been derived from the supposi- 
tion that close enough p and gaß vary more steeply in 
the direction normal to the zero surface than they do 
in directions parallel to the surface. Since we are not 
here making a uniformity postulate applicable to the 
whole universe, our results do not apply everywhere, 
as in the usual Friedmann models. Far enough away 

ORIGIN OF MICROWAVE BACKGROUND 
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from the zero surface, things may be very different 
from the Einstein-de Sitter model. 

The point of view to be taken at this stage is the 
following: 

Although the region over which the Einstein-de 
Sitter model applies is only a small element of the whole 
universe, it nevertheless encompasses everything which 
the astronomer observes, even with the largest telescope. 

To be able to approach and to cross a zero surface 
we must avoid the use of the Einstein frame. A suitable 
conformal transformation of (26) is needed. The 
choice Q = Q1 leads to a particular simple geom- 
etry, namely the Minkowski flat-space form 

ds*2 = dr2 - (dx2 + dy2 + dz2), (27) 

in which the new time coordinate r is defined by 

In this Minkowski conformal frame the electron mass 
me* is a function of r. Sufficiently near the zero surface, 
me* can be expanded in powers of r, 

me* = At + Bt2 + • • • . (29) 

The gravitational equations based on (4) turn out to 
require A = 0. Hence the leading term in the expres- 
sion for rae* is quadratic in r, requiring particle masses 
to be of the same sign on both sides of the zero surface. 
The coefficient B can be related to the particle density 
and is positive. 

It will be recalled that zero surfaces arise from the 
properties of the mass field, M(x). This mass field 
changes sign at the zero surface. Particle masses, on 
the other hand, maintain the same sign, because the 
coupling of particles to the mass field changes across 
such surfaces. This behavior of the mass field and of 
the particle masses is illustrated in figure 3. 

The situation we have arrived at for the Minkowski 
conformal frame is illustrated in figure 4. The particle 
trajectories are everywhere normal to r = 0, and the 
particle density is constant within the local region to 
which the above considerations apply. The local 
region contains the range of astronomical observation, 
and it also extends across the zero surface. It is this 
extension that permits discussion of the problem of 
the origin of the microwave background. 

From here on, we drop the starred notation from 
(29), denoting the electron mass in the Minkowski 
frame by me. If we have occasion to refer to the 
electron mass in the Einstein frame, we shall denote it 
by rae*. That is to say, from here on we shall reverse 
the above starred and unstarred notations, writing 

ds2 = dr2 — (dx2 + dy2 + dz2) 

in the Minkowski frame. 

VI. THE ORIGIN OF THE MICROWAVE BACKGROUND 

The sense of electromagnetic propagation will be 
taken on both sides of the zero surface to be in the 

Fig. 3.—-Although both the mass field M and the particle 
mass m vary quadratically with the time, the mass field changes 
sign at T = 0, whereas the particle mass is positive for all r. 
This behavior is due to the coupling constant between the 
field and the particles, which is positive for r > 0 and negative 
for t < 0. 

sense of increasing r. Radiation generated on one side 
then propagates away from the zero surface, and on 
the other side propagates toward the zero surface. 
Since experience on “our side” is that propagation 
occurs in the sense of the expansion of the universe, 
our side must have r > 0, our sense is away from the 
zero surface. Radiation generated on the “other side” 
goes toward the zero surface, as is illustrated in figure 

Fig. 4.—The range of astronomical observation is confined 
to the backward light cone taken from the present moment 
back only to r = 0. 
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T=0 

Fig. 5.—Radiation from sources at t > 0 propagates away 
from the surface, while radiation from sources at r < 0 
propagates toward r = 0, where it is thermalized. The side 
r > 0 is “our side,” and r < 0 is the “other side.” 

5. Near t = 0, such radiation is strongly absorbed and 
reemitted, and so becomes thermalized, because 
e2lme becomes large as me decreases, so the Thomson 
cross section becomes large. Indeed, as me->0 ab- 
sorption processes are formally divergent—in prac- 
tice, quantum mechanical cross sections probably tend 
to a constant saturation level. 

The suggestion of the present paper is that radiation 
generated on the other side becomes thermalized near 
t = 0 and then becomes the microwave background. 

To obtain an estimate of the energy density of the 
thermalized radiation, we shall suppose that galaxies 
existed at r < 0, and that their stellar content was 
similar to the stellar content of the galaxies now ob- 
served by astronomers at r > 0. Writing r0 (> 0) for 
the present epoch, the energy density of starlight pro- 
duced on our side over the time range 0 < r < t0 has 
been estimated to be about 10“14 ergs cm“3, less than 
the energy density of the microwave background by a 
factor of about 50. Thus with the situation on the 
other side taken to have been similar to that on our 
side, the energy density of stellar radiation produced 
over the time range — r0 < r < 0 would have been 
some 50 times less than the energy density of the 
microwave background. This discrepancy is appro- 
priate, however, because galaxies on the other side 
would also have produced starlight at times earlier 
than — t0, and such earlier contributions could be 
large, as we shall now see. 

Any physical quantity of dimensionality n that is 
constant in the Einstein frame varies like ra/1 in the 
Minkowski frame. The luminosities of galaxies are 
usually taken to be approximately constants in the 
Einstein frame. Since luminosity has dimensionality 
n = 2, luminosities thus behave like me

2 in the 
Minkowski frame—i.e., like r4. Consequently the 
energy density of starlight propagated on the other 
side toward r = 0 will be dominated by emission at 
the largest |r|—i.e., by the earliest emission. Indeed 
the ratio of the emission over the range t± < t < 0 to 
that over — r0 < r < 0 is evidently (ItíI/to)5, so that 
the emission is considerably enhanced even though 
I Til may be only moderately larger than r0. In fact, 

for I rather more than 2r0 we have (IttI/to)5 ^ 50, 
the required enhancement. 

It is of interest to relate this estimate for ItíI to time 
measured in the Einstein frame, since we are better 
used to intervals expressed in the Einstein frame. 
Writing t0 for the ¿-value corresponding to tq, present- 
day observational studies of the distances and of the 
redshifts of galaxies on our side suggest that t0 is about 
15 x 109 years. Working for the moment on our side, 
what then is the value of t± corresponding to 1^1 
2t0? Since Q(t)oct213, the definition (28) gives 
r oc ¿1/3. Hence 

to 
10. (30) 

Thus with ¿o = 15 x 109 years we get ^ 150 x 109 

years. Since the situation is symmetric about r = 0, 
we accordingly require, in the familiar ¿-scale of the 
Einstein frame, that galaxies existed on the other side 
backward from ¿ = 0 for about 150 billion years. 
Normal production of starlight then explains the 
observed energy density of the microwave back- 
ground. 

VII. SOME TOPICS OF DISCUSSION 

The explanation of the origin of the microwave 
background given in the preceding section raises 
many questions and problems. Some are difficult or 
outside the range of present knowledge. For example, 
the following questions : 

Why do we happen to live near a zero surface ? 
What is the universe like when one does not live 

near a zero surface ? 
What causes the sign change of the contributions to 

the mass field ? 
Why are there plus and minus aggregates ? 

These questions are outside the scope of the present 
paper. 

A more accessible question concerns the intensity 
of the microwave background. Could the energy 
density have been even larger than it is observed to 
be? This would have been so if normally emitting 
galaxies on the other side had extended over the ¿-scale 
backward from ¿ = 0 for more than 150 billion years. 
Would we expect this to have been the case? As a 
possible negative answer to this question, it should be 
noted that the behavior me oc r2, on which the above 
estimates depend, is valid only sufficiently close to the 
zero surface. At | ¿ | of order 150 billion years the con- 
dition of being sufficiently close may well break down. 

It is also the case that energy production by hydro- 
gen to helium conversion cannot continue effectively 
for much more than this, because of the general 
exhaustion of the supply of hydrogen. One percent of 
the hydrogen in a galaxy like our own is consumed in a 
range of |¿| of about 5 billion years. 

An observer on the other side at |r| ~ t0 could 
experience an astrophysical situation much like ours, 
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but the cosmological situation would be critically 
different, since light from distant galaxies would be 
blueshifted, not redshifted as it is on our side. To study 
this difference, consider first the redshift on our side. 
Working in the Minkowski frame, a galaxy at distance 
r has redshift z = AÀ/À given by 

where r(>0) is the epoch at which observation is 
made. The flux S from the galaxy is expressed in flat 
space by 

¿O' - O 
4-nr2 ’ 

(32) 

where L(r — r) is the luminosity at time r — r, the 
moment at which light, observed at time r (>r), 
started its journey. Taking all the observed galaxies to 
have the same luminosity in the Einstein frame, we 
have L(t — r) cc me

2 oc (r — r)4 in the Minkowski 
frame. Consequently the flux satisfies the propor- 
tionality 

S oc {r - Q4 

«2 (33) 

Eliminating r in equation (33) with the help of (31) 
gives 

'S'0C (l+z)[(l+z)1/2-l]2 ’ (34) 

which is the well-known relationship between S and z 
for the Einstein-de Sitter model. 

Defining the blueshift on the other side by z = 
àvjv, Av being the frequency increase in the light from 
a distant galaxy taken for a spectrum line of local 
frequency v, the corresponding formulae, with r now 
< 0, are 

1 , _ fne(r - r) (r - r)2 
1 -t- Z =  y-T  =  5  ? 

me(T) T2 

_ Ur - r) 
Attv2 ’ S oc (t - rf 

r2 ’ 

(35) 

(36) 

S cc (1 + z)2 

[(1 + z)1/2 — l]2 * 
(37) 

It is interesting that for z « 1 the flux is essentially 
proportional to z~2, just as it is on our side, but that 
for z > 3 the flux actually increases with z. 

This difference with respect to redshift and blue- 
shift means that the two sides of a zero surface behave 
very much like the “bounce” which is sometimes 
postulated for the closed Friedmann model (Æ = +1 
in the usual notation). But no successful mathematical 
model has been given for such a bounce, whereas here 
we have a complete mathematical scheme, at any rate 

within the limitations imposed by our initial assump- 
tion of the existence of plus and minus aggregates. Nor 
is there any need in the present case for an endless 
repetition of cycles of expansion (redshift phase) and 
contraction (blueshift phase) such as is postulated for 
the Friedmann model. Here we simply have the two 
sides of a zero surface. Far removed from a zero 
surface the universe could be very different from the 
restricted properties of an oscillatory cosmology. 

Maxwell’s equations admit electromagnetic propa- 
gation in either time sense, so the forms of propaga- 
tion used above can simply be assumed to hold good. 
Alternatively, we can follow the point of view that, 
taken microscopically, both the advanced and re- 
tarded solutions of Maxwell’s equations are generated 
equally. Then by introducing the Wheeler-Feynman 
concept of a response of the universe it is possible to 
obtain net propagation in one particular time sense. 
The physical condition required to obtain propagation 
forward in time is that the future light cone be 
perfectly absorbing (see HN 1974). In the situation con- 
templated here, this is certainly the case for propaga- 
tion on the other side, since rae -> 0 as r 0 ensures 
complete absorption at r = 0. On our side, r > 0, we 
require the future light cone to be also totally ab- 
sorbing. This will be the case provided radiation 
emitted along our future light cone eventually reaches 
another surface of zero mass, as we may expect it to do 
at the boundary of our aggregate. Indeed, surfaces of 
zero mass, occurring extensively in the universe, 
provide an ideal means for controlling the sense of 
propagation of electromagnetic fields—and perhaps 
for other fields as well. 

It should be a general rule, applicable through the 
whole universe, that the sense of electromagnetic 
propagation never reverses along any timelike line. 

VIII. GALAXIES AND STARS ON THE OTHER SIDE 
It is possible that the microwave background is by 

no means the only aspect of our experience to indicate 
the existence of the “ other side.” Galaxy formation on 
our side may do so. Some stars on our side may even 
be connected with stars on the other side. To begin an 
approach to this idea, it is useful to ask what happens 
to galaxies and to stars as they approach r = 0 from 
the other side. 

Although we are used to thinking in terms of the 
Einstein frame, and although the present question 
might be answered by working in the Einstein frame 
(we are not concerned here with actually crossing the 
zero surface), there are important advantages in per- 
sisting with the Minkowski frame. We are well used to 
the geometry of the Minkowski frame, so much so that 
often enough when we claim to work in the Einstein 
frame we still tend to think geometrically in terms of 
flat space. This tendency will be avoided by taking 
Minkowski space as our basic conformal frame. 
Radiation is also more easily considered, since radia- 
tion propagates in the Minkowski frame without 
change of frequency—the frequency changes only 
when radiation interacts with matter, and in this 
respect our usual ideas continue to hold good. 
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Against these advantages, gravitation behaves 
peculiarly in the Minkowski frame, not only because 
the particle masses change with time, but because the 
gravitational “constant” G also changes. In the 
Einstein frame G is indeed constant; but being of 
dimensionality n = —2, G varies like me~

2, i.e., like 
r~4, in the Minkowski frame (this variation is not to 
be confused with the Dirac form of cosmology in 
which G is taken to be variable even in the Einstein 
frame). The treatment of gravitational problems can 
therefore be quite awkward and unfamiliar when con- 
sidered in the Minkowski frame. Yet this is no handi- 
cap in dealing with any known gravitational problem. 
If the solution is known already in the Einstein frame, 
any physical quantity appearing in the solution can 
immediately be transformed to the Minkowski frame. 
We simply note the dimensionality n of the quantity 
and use an additional time dependence r2n in the 
Minkowski frame. 

As an example, the radius of a main-sequence star 
stays approximately constant in the Einstein frame, at 
any rate as long as the sky remains dark in the sense of 
Gibers’ well-known paradox. Since “radius” has 
dimensionality « = — 1, the radius of a main-sequence 
star behaves like r~2 in the Minkowski frame. The 
radius of a galaxy behaves in the same way. 

Suppose on the other side at time |r| = r0 that 
galaxies had radii, stellar content, and spacings apart 
from each other that were similar to what we observe 
on our side at the present time r0. Now the spacings of 
galaxies stay fixed in the Minkowski frame, because 
galaxies behave cosmologically like the particles 
shown in figure 4. That is to say, galaxies have paths 
normal to the zero surface r = 0. Hence for |r| < r0 
the galaxies were larger in proportion to their spacings 
than they are at present. Indeed for |r| given by 

(lüV (38) 
\ T / \ RadlUS / present day 

the galaxies on the other side were overlapping each 
other. The right-hand side of equation (38) has an 
average value of about 300, so that galaxies on the 
other side were overlapping for |r| ^ to/(300)1/2. 

As the galaxies expanded with decreasing |r|, but 
before they overlapped, the ratio of the mean inter- 
stellar separation to the radii of the stars stayed con- 
stant. After overlap, however, the mean interstellar 
separation stayed fixed, whereas the radii of the stars 
continued to increase with decreasing |r|; which 
prompts the questions : Did the stars overlap also ? If 
the stars were to continue to expand like r-2, they 
would certainly do so, at a time r < 0 which is easily 
shown to satisfy the equation 

(2V - aop/Stelto pacing) ^ (39) 
\'r / \ Stellar radius / Present day 

the ratio on the right-hand side of equation (39) being 
that which applies for stars in galaxies at the present 
time r0. Since this ratio is about 3 x 107, taken for a 
typical main-sequence star, equation (39) gives 

(t0/t)2 ^ 1010. At first sight then, we might expect 
stars to overlap in the same way as galaxies, but at a 
much smaller value of |r|. Yet this conclusion appears 
doubtful, because the sky on the other side became 
bright in the sense of Olbers before this stage was 
reached. 

In the Einstein frame, the temperatures within main- 
sequence stars stay approximately constant. Since 
“temperature” has dimensionality n = \, the tem- 
perature values in the Minkowski frame therefore 
behaved like r2, implying a value of only ~ 10-3 ° K 
when (t/t0)

2 ^ 10~10. At such a very low'tempera- 
ture, the pressure within a star would be much less 
than the pressure of the radiation field outside the 
star—we know the external radiation field after ther- 
malization gave a temperature of ~ 3° K. Because stars 
would be incapable of maintaining their expansion 
under such circumstances, the argument of the 
previous paragraph is incorrect. Expansion may be 
expected to have ceased when the internal temperatures 
inside stars fell to ~ 3° K, which occurred for 

(t0/t)2 ~ 107, (40) 

well before stellar overlap could take place. Combining 
equation (40) with the previous paragraph, we expect 
stellar expansion to have ceased when 

Mean interstellar spacing ^ 3 . 
Mean stellar radius ~ • v ) 

While the stars would be quite close together, they 
would not be in immediate juxtaposition. 

It may be useful to relate these considerations to our 
everyday concept of length, say to the centimeter. A 
unit of 1 cm has an operational meaning at the present 
day—it is a certain number of wavelengths in mono- 
chromatic radiation from a certain transition of 86Kr. 
We can determine the ratio of 1 cm, defined in this 
practical way, to the mean spacing of the particles of 
figure 4. Having done this for our immediate neigh- 
borhood at the present day, using the local smoothed 
cosmological particle density, we then define “1 cm” 
to be the same ratio, always taken, whatever r may be, 
with respect to the mean spacing of the smoothed 
distribution of the particles of figure 4. In the Min- 
kowski conformal frame this latter spacing is constant, 
and so “ 1 cm” defined in this way is also constant in 
the Minkowski frame. 

The galaxies on the other side expand in the Min- 
kowski frame from radii of order 3 x 1022 cm at time 
|r| = r0 to about 1025 cm at the time of their overlap. 
The mean interstellar spacing within galaxies likewise 
increased from about 3 x 1018 cm at |r| = t0 to about 
1021 cm at the moment when the galaxies overlapped. 
Thereafter, the mean interstellar spacing remained at 
~ 1021 cm. The main-sequence stars themselves in- 
creased in radius from ~ 1011 cm at |r| = r0 to ~ 1018 

cm at the stage where their internal temperatures fell 
to ~3° K. The pressure of the external radiation 
field was then comparable to interior pressures, and 
expansion in the sense discussed above then ceased. 
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With Ir| continuing to decrease, the particles within 
the stars would take on a curious kind of equilibrium. 
With the internal temperature staying fixed and the 
radius fixed, the internal pressure would remain con- 
stant. The pressure of the external radiation also 
remained constant. So did the gravitational force on a 
particle. Hence it seems possible that stellar condensa- 
tions may have persisted to r = 0. It is true that 
particles would have been evaporated from the ex- 
tended stellar surfaces, particularly as long as the 
external radiation field remained unthermalized. The 
quanta impinging on the stars would be capable of 
endowing particles with higher and higher speeds as 
their masses continued to decline. Yet it seems doubt- 
ful that thermal evaporation could smooth the stellar 
condensations into a more or less uniform distribution 
of particles. At the stage where stellar expansion 
ceased, the stage determined by (40), the Thomson 
cross section had already increased by a factor 
~ 1014, due to the decline of the electron mass. Par- 
ticles evaporated from the surface of a star would not 
be free therefore to move into the space outside, 
because of frequent deflections of their motions from 
the scattering of radiation.2 Accordingly, it seems 
likely that matter reached r = 0 still with substantial 
fine-scale variations of density. 

With equation (41) remaining approximately valid, 
even to r = 0, local particle densities would be 
greater than the smoothed density by a considerable 
factor, by a factor probably less than, but perhaps 
comparable with, 

/Stellar spacing\3 _ 9 

\ Stellar radii / 
(42) 

Such islands of high density entering our side at 
T > 0 would very likely become stars again as the 
particle masses then increased with increasing r. 
Hence it seems possible that many stars on our side 
are fossil relics of stars which existed formerly on the 
“other side.” 

IX. PROBLEMS OF CHEMICAL COMPOSITION 

The possibility that matter may pass through r = 0 
with considerable fine-scale variations of particle 
density raises interesting questions of chemical com- 
position. Regions of high density resulting from stars 

2 Before thermalization, the number density of quanta in 
the external radiation field would be^l0-2cm~3 (defining the 
centimeter in the manner discussed above). The Thomson 
cross section, after an increase by a factor 1014, was ~10-10 

cm2. Hence the mean free path between successive scatterings 
by an electron cannot have been more than ~1012cm, very 
small compared with the interstellar spacing of ~ 1021 cm. Any 
thermal outflow of particles from the stars evidently ex- 
perienced a strong viscous drag from the external radiation 
field. 

crossing r = 0 from the “ other side” would behave in 
their nuclear evolution rather like the local objects 
studied by Wagoner, Fowler, and Hoyle (1967), in 
what these authors called “the high temperature 
case.” There is the difference of principle, however, 
that, whereas the local objects of Wagoner, Fowler, 
and Hoyle (WFH) determined their own nuclear time 
scale, here the time scale is that appropriate to the 
smoothed Einstein-de Sitter model. Fortunately, 
however, WFH studied a case having closely the ap- 
propriate time scale, with results shown in figure 6 of 
their paper. This case is directly applicable to the 
present discussion, and it is interesting that WFH 
found the resulting chemical composition to resemble 
that of Type II halo stars. These authors were particu- 
larly impressed at finding a fraction by mass of order 
10 -5 to be processed by neutron addition to give 
elements of atomic weight up to ^4 ^ 100. This was 
the one case examined by WFH in which elements 
of high atomic weight, above the iron group, were 
produced in appreciable quantity. 

The fraction of all material condensed into stars on 
the “other side” is of course not known. If most were 
indeed in the form of stars, then the chemical compo- 
sition to emerge on our side would mainly be of the 
kind discussed briefly in the preceding paragraph, 
with the processed material largely locked away in a 
cloud of stars emerging on our side from r = 0. Some 
of these stars might form themselves into galaciic 
aggregations—possibly the elliptical galaxies—but 
most of them may well be distributed everywhere 
throughout space. Yet some fraction of the material 
would be distributed at r = 0 with approximate 
spatial uniformity. Such smoothly distributed material 
would experience nuclear evolution, not like a uniform 
Einstein-de Sitter model (q0 = +£), but like a model 
of smaller qQ. In the notation of WFH, this distributed 
material would behave in the manner of a model 
having parameter h less than the value ~ 10“3 appro- 
priate to the smoothly distributed Einstein-de Sitter 
case. It is well known that such smaller values of h can 
lead to D/H ^ 10 ~5, the deuterium-to-hydrogen ratio 
now believed by many astronomers to exist every- 
where through the gas clouds of our own Galaxy. 

From what has just been said it is clear that the 
nuclear evolution of material emerging on our side 
from t = 0 would be likely to contain a large measure 
of variety, ranging from values of the h parameter of 
WFH less than 10“ 3 up to values of order 103, or even 
higher. Hence the nuclear species emerging from 
t = 0 may well have been much richer than has usually 
been appreciated. 

In conclusion, enough has been said to show that 
we may owe many aspects of our present-day world to 
remote ancestors on the other side of the barrier which 
has hitherto been thought to represent the origin of the 
universe. 
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