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Measuring a function in physics can be modelled by a convolution integral of
this function with e.g. a Gaussian distribution. Since basically everything in
physics is subject to measurement, the very nature of any function in mathe-
matics is revealed by such a convolution integral. The aim of this paper is to
demonstrate that several singularities of the form 1/rd, where d is smaller than
the space dimension, are actually non-existent in nature.

Fuzzy Elektron

In general, the energy density in the electric field of a point charge q is given by
w = 1

2ε0E
2 where the electric field E at a distance r is:

E =
q

4πε0r2

The total energy in the field is thus given by the integral:

U =
∫∫∫

1
2
ε0E

2 dx dy dz =
∫ ∞

0

1
2
ε0

(
q

4πε0r2

)2

4πr2dr =

q2

8πε0

∫ ∞
0

dr

r2
=

q2

8πε0

[
1
r

]∞
0

=∞

There is an infinite outcome for de self energy of the electron. This is quite
a serious problem in electrodynamics. Because of the equivalence of mass and
energy ( via E = m0c

2 ) it would mean, for example, that an electron can not
move in space, at all, theoretically. We shall see now how this problem can be
resolved by renormalization, as understood by this author.
The Gaussian broadening operator for one dimension is:

e
1
2σ

2(d/dx)2

We could have called it a sensor. The spread of the sensor is σ. Generalisation
of the sensor S to three dimensions is straightforward:

S = e
1
2σ

2∇2

Where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
If S works on a function f , then we write: f = S f , where f may be called the
sense of f . Provided that σ is small when compared with the overall size of the
problem. We could also say, more ”mathematically”, that σ → 0.
We have seen that renormalizing an integrand is not of much help with the
prevention of divergent integrals. Because there is a theorem that the integral
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of the fuzzyfication is equal to the integral of the original. It has no sense,
therefore, to apply broadening on 1/r2, as has happened in my (Dutch) book,
quite unfortunately. Thus we must do the renormalization at some other place
in the derivation. This place, to be precise:

q2

8πε0

[
1
r

]∞
0

As follows: 1/r(x, y, z) =(
1

σ
√

2π

)3∫∫∫ 1√
ξ2 + η2 + ζ2

e−[(x−ξ)2+(y−η)2+(z−ζ)2]/2σ2
dξ dη dζ

However, the Gaussian broadening is only needed at two distinct places: r = 0,
r =∞. The value at r =∞ is worked out with help of the well-known fact that
f = f + 1

2σ
2∇2f : see the ”Far away Field” subsection below.

When applied to the electric field around the electron (in spherical symmetric
coordinates), the second order term disappears:

∇2 1
r

=
1
r

∂2

∂r2
r

1
r

= 0 =⇒ lim
r→0

1/r = lim
r→0

1/r
(

1 +O(
[σ
r

]n
)
)

= 0

Not unexpectedly, because any potential function obeys the Laplace equation.
Thus ∇21/r = 0 for r > 0. Meaning that any difference with the classical
solution 1/r will be at least of third order (i.e. order (σ/r)n where n ≥ 3).
On the other hand, r = 0 just means that x = y = z = 0 . Thus the three-
dimensional convolution integral is simplified a great deal at that place. If we
then substitute ξ2 + η2 + ζ2 = r2, it becomes:(

1
σ
√

2π

)3 ∫ ∞
0

1
r
e−r

2/2σ2
4πr2dr =

1
σ
√

2π

∫ ∞
0

e−
1
2 (r/σ)2

d(r/σ)2 = 2
1

σ
√

2π
Thus the overall result for the self energy of an electron is a finite outcome:

U =
q2

4πε0
1

σ
√

2π
≈ 0.40V (σ).q

With other words: the self energy of an electron is a factor times the energy of
the electric field of a test charge q at a distance σ.
Instead of the Gaussian shape function, let’s utilize a function with a small solid
sphere - radius R - as its domain of non-zero’ness and with height one divided
by the sphere’s volume. We can take for granted that the far-away term for
r = ∞ is zero again. The convolution with the sphere function at the origin
r = 0 is given by: ∫ R

0

1
r

1
4/3πR3

4πr2 dr =
1/2 4πR2

1/3 4πR3
=

3
2

1
R
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Where the spread σ is related to the well known moment of inertia of a sphere:
σ2 = 1/5R2 =⇒ R =

√
5 σ . Conclusion:

U =
q2

4πε0
3

4
√

5 σ
≈ 0.34V (σ).q

It is seen that, in general, the self-energy is given by a dimensionless form-factor,
times the energy of the electric field of a test charge q at a distance σ.

Far away Field

The result of an observation of a function g(x, y, z) with the sensor S is in
general a convolution integral:

g =
∫∫∫

f(ξ, η, ζ)g(x− ξ, y − η, z − ζ)dξdηdζ

Here f is the kernel function of the sensor and g is the function to be observed.
The function g is developed into a Taylor series around (ξ, η, ζ) = (0, 0, 0):

g(x− ξ, y − η, z − ζ) ≈ g(x, y, z)

−ξ ∂g
∂x
− η ∂g

∂y
− ζ ∂g

∂z

+
1
2
ξ2 ∂

2g

∂x2
+

1
2
η2 ∂

2g

∂y2
+

1
2
ζ2 ∂

2g

∂z2

+ξη
∂2g

∂x∂y
+ ηζ

∂2g

∂y∂z
+ ζξ

∂2g

∂z∂x

In this expression the partial differential quotients are no longer dependent
on (ξ, η, ζ), because they are calculated for (ξ, η, ζ) = (0, 0, 0). Therefore the
convolution integral is approximately equal to:

g(x, y, z)
∫∫∫

f dξdηdζ

− ∂g

∂x

∫∫∫
ξ f dξdηdζ − ∂g

∂y

∫∫∫
η f dξdηdζ − ∂g

∂z

∫∫∫
ζ f dξdηdζ +

1
2
∂2g

∂x2

∫∫∫
ξ2 f dξdηdζ +

1
2
∂2g

∂y2

∫∫∫
η2 f dξdηdζ +

1
2
∂2g

∂z2

∫∫∫
ζ2 f dξdηdζ+

∂2g

∂x∂y

∫∫∫
ξη f dξdηdζ +

∂2g

∂y∂z

∫∫∫
ηζ f dξdηdζ +

∂2g

∂z∂x

∫∫∫
ζξ f dξdηdζ

The first integral is by definition equal to 1. The next three integrals are equal to
the expectation value of the kernel function, and therefore equal to 0. The next
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three integrals are equal to the spreads of the kernel function in the different
coordinate directions. The last three integrals, at last, are zero. Thus:

g ≈ g +
1
2
σ2
x

∂2g

∂x2
+

1
2
σ2
y

∂2g

∂y2
+

1
2
σ2
z

∂2g

∂z2
= g +

1
2
σ2∇2g

An asymptotic approximation for large distances, which can also be found in
any decent book about Statistics, where the last equality is for the isotropic
case only (which in turn is guaranteed by spherical symmetry).

Sphere Singularity

We repeat, the electric field strength of a point charge q at a distance r is:

E =
q

4πε0r2

Instead of renormalizing the total energy in the field, we can try on the electric
field itself. As follows: 1/r2(x, y, z) =(

1
σ
√

2π

)3∫∫∫ 1
ξ2 + η2 + ζ2

e−[(x−ξ)2+(y−η)2+(z−ζ)2]/2σ2
dξ dη dζ

Values at r =∞ (r large) are worked out with help of the well-known fact that
f = f + 1

2σ
2∇2f : see the ”Far away Field” subsection above.

When applied to the electric field around the electron (in spherical symmetric
coordinates), the second order term now becomes:

∇2 1
r2

=
1
r

∂2

∂r2
r

1
r2

=
2
r4

=⇒ E ≈ E
(

1 +
σ2

r2

)
Meaning that the electric field, even if it’s only moderately far away from the
singularity, can hardly be distinguished, if at all, from the classical field. Thus
the Gaussian broadening is essentially felt at the singularity only: r = 0. On the
other hand, r = 0 just means that x = y = z = 0 . Thus the three-dimensional
convolution integral is simplified a great deal at that place. If we then substitute
ξ2 + η2 + ζ2 = r2, it becomes:(

1
σ
√

2π

)3 ∫ ∞
0

1
r2
e−r

2/2σ2
4πr2dr =

4π 1/2σ
√

2π
σ22π σ

√
2π

=
1
σ2

=⇒ E(0) =
q

4πε0σ2

A very beautiful result! Now let’s do the same thing with the sphere function
of the preceding paragraph. And employ the fact that R =

√
5σ :∫ R

0

1
r2

1
4/3πR3

4πr2 dr =
4πR

1/3 4πR3
=

3
R2

=
3
5

1
σ2

=⇒ E(0) = 0.6
q

4πε0σ2

It’s seen, again, how the form-factor of the shape functions come into play.
Again, the form factor of the Gaussian is the greatest of the two.
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Cylinder Singularity

Instead of three-dimensional singularities 1/r and 1/r2, consider a singularity
1/r in two dimensions only. Together with Gaussian and with ”rectangular”
smoothing. The accompanying convolution integral is simplified a great deal at
the singularity itself, for r = 0 :(

1
σ
√

2π

)2 ∫ ∞
0

1
r
e−r

2/2σ2
2πrdr =

2π 1/2σ
√

2π
σ2 2π

=

√
π/2
σ

Let’s do the same thing with a cylinder function, which is zero outside the circle
x2 + y2 = R2 and has height 1/(πR2) inside the same circle, resulting in a
volume normed to one = 1 . Use the fact that σ = R/2 for a cylinder. Then:∫ R

0

1
r

1
πR2

2πr dr =
2πR
πR2

=
2
R

=
1
σ

It’s seen, again, how the form-factor of the shape functions come into play.
Again, the form factor of the Gaussian is the greatest of the two.
Question: is the form factor of the Gaussian always the greatest of all possible
form factors, for all singularities?

Useful Lemmas

In order to arrive at a suitable approximation of some integrals later on, a couple
of lemmas are useful.
Lemma. ∫ ∞

0

e−x
2/2xndx = (n− 1)

∫ ∞
0

e−x
2/2xn−2dx

Proof.∫ ∞
0

e−x
2/2xndx =

∫ ∞
0

e−x
2/2 d

xn+1

n+ 1
=
[
e−x

2/2 x
n+1

n+ 1

]∞
0

−
∫ ∞

0

xn+1

n+ 1
de−x

2/2

= 0−
∫ ∞

0

[
− x

n+1

n+ 1
x

]
e−x

2/2dx =
∫ ∞

0

xn+2

n+ 1
e−x

2/2dx =⇒

(n+ 1)
∫ ∞

0

e−x
2/2xndx =

∫ ∞
0

xn+2e−x
2/2dx

Now replace n by n− 2, read the formula from the right to the left and we are
done. But the other way around is easier:∫ ∞

0

e−x
2/2xndx = −

∫ ∞
0

xn−1d e−x
2/2 = −

[
e−x

2/2xn−1
]∞

0
+
∫ ∞

0

e−x
2/2d xn−1

=⇒
∫ ∞

0

e−x
2/2xndx = (n− 1)

∫ ∞
0

e−x
2/2xn−2dx
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Let F (n) =
∫∞

0
exp(−x2/2)xndx in the sequel.

Two cases can be distinguished: n is even and n is odd. In case n is even,
recursion with respect to n proceeds as follows: F (n) =

(n− 1)F (n− 2) = (n− 1)(n− 3)F (n− 4) = ... = (n− 1)(n− 3)(n− 5) ... 1F (0)

Where:
F (0) =

∫ ∞
0

e−x
2/2dx =

1
2

√
2π

Substitute n = 2m. Then:

(n− 1)(n− 3)(n− 5) ... 3.1 = (2m− 1)(2m− 3)(2m− 5) ... 3.1 =

2m(2m− 1)(2m− 2)(2m− 3) ... 3.2.1
2m(2m− 2)(2m− 4) ... 4.2

=
(2m)!

2mm(m− 1)(m− 2) ... 2.1
=

(2m)!
2mm!

In case n is odd, recursion with respect to n proceeds as follows: F (n) =

(n− 1)F (n− 2) = (n− 1)(n− 3)F (n− 4) = ... = (n− 1)(n− 3)(n− 5) ... 2F (1)

Where:

F (1) =
∫ ∞

0

e−x
2/2xdx =

∫ ∞
0

e−x
2/2d(x2/2) = −

[
e−t
]∞
0

= −(0− 1) = 1

Substitute n = 2m+ 1. Then:

(n− 1)(n− 3)(n− 5) ... 3.1 = 2m(2m− 2)(2m− 4) ... 2 = 2mm!

Most of the time, though, the integrals to be evaluated look like this:∫ ∞
0

e−
1
2 (ρ/σ)2

ρn dρ = σnσ

∫ ∞
0

e−
1
2 (ρ/σ)2

( ρ
σ

)n
d
( ρ
σ

)
= F (n) σn+1

Summarizing (m is a natural number m ≥ 0):∫ ∞
0

e−
1
2 (ρ/σ)2

ρ2m dρ =
(2m)!
2mm!

σ2m+1 1
2

√
2π

∫ ∞
0

e−
1
2 (ρ/σ)2

ρ2m+1 dρ = 2mm! σ2m+1 (not applied)

Lemma. ∫ 2π

0

cosn(x) dx =
n− 1
n

∫ 2π

0

cosn−2(x) dx

Proof. ∫ 2π

0

cosn(x) dx =
∫ 2π

0

cosn−1(x) d sin(x) =

[
cosn−1(x) sin(x)

]2π
0
−
∫ 2π

0

sin(x) d cosn−1(x) =
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0 +
∫ 2π

0

(n− 1) cosn−2(x) sin2(x) dx =

(n− 1)
∫ 2π

0

cosn−2(x) dx− (n− 1)
∫ 2π

0

cosn(x) dx =⇒∫ 2π

0

cosn(x) dx+ (n− 1)
∫ 2π

0

cosn(x) dx = (n− 1)
∫ 2π

0

cosn−2(x) dx

Which leads to the desired result. Let F (n) =
∫ 2π

0
cosn(x)dx in the sequel.

Two cases can be distinguished: n is even and n is odd. In case n is even,
recursion with respect to n proceeds as follows:

F (n) =
n− 1
n

F (n−2) =
n− 1
n

n− 3
n− 2

F (n−4) = ... =
n− 1
n

n− 3
n− 2

n− 5
n− 4

...
1
2
F (0)

Where F (0) =
∫ 2π

0
dx = 2π. In case n is odd, recursion with respect to n

proceeds as follows:

F (n) =
n− 1
n

F (n−2) =
n− 1
n

n− 3
n− 2

F (n−4) = ... =
n− 1
n

n− 3
n− 2

n− 5
n− 4

...
2
3
F (1)

Where F (1) =
∫ 2π

0
cos(x) dx = 0. Thus all odd functions F are zero. The case

n = 2m is even can be simplified further:

n− 1
n

n− 3
n− 2

n− 5
n− 4

...
1
2

=
n(n− 1)(n− 2)(n− 3) ... 3.2.1

[(n(n− 2)(n− 4) ... 4.2]2
=

(2m)!
(2mm!)2

=⇒

∫ 2π

0

cos2m(x)dx =
(2m)!

(2mm!)2
2π

Whole Cylinder Field

The whole renormalized cylinder field is given by:

1/r(x, y) =
∫∫

e−
1
2 [(x−ξ)2+(y−η)2]/σ2

2πσ2
√
ξ2 + η2

dξ dη

We seek for a simplification of this expression. Transform to polar coordinates
by ξ = ρ cos(θ) , η = ρ sin(θ) and x = r cos(φ) , y = r sin(φ) :

1/r(x, y) =
∫∫

e−
1
2 [x2−2xξ+ξ2+y2−2yη+η2]/σ2

2πσ2ρ
dξ dη =

e−
1
2 (x2+y2)/σ2

2πσ2

∫∫
1
ρ
e−

1
2 (ξ2+η2)/σ2

e(xξ+yη)/σ2
dξ dη
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Where xξ + yη = r cos(φ)ρ cos(θ) + r sin(φ)ρ sin(θ) = rρ cos(θ − φ). Hence:

1/r(x, y) =
e−

1
2 (r/σ)2

2πσ2

∫ ρ=∞

ρ=0

∫ θ=2π

θ=0

e−
1
2 (ρ/σ)2

erρ cos(θ−φ)/σ2 1
ρ
ρ dρ dθ

The singularity disappears by ρ/ρ = 1 . The integral between square brackets [ ]
is an integral over a periodic function with a period 2π equal to the integration
interval. Consequently it is independent of φ. Thus the final expression to be
calculated is:

1/r(x, y) =
e−

1
2 (r/σ)2

2πσ2

∫ ∞
0

e−
1
2 (ρ/σ)2

[∫ 2π

0

erρ cos(θ)/σ2
dθ

]
dρ

The function exp(rρ cos(θ)/σ2) is expanded into a power series:

erρ cos(θ)/σ2
= 1 + rρ cos(θ)/σ2 +

[
rρ cos(θ)/σ2

]2
2

+

[
rρ cos(θ)/σ2

]3
3!

+

... +

[
rρ cos(θ)/σ2

]n
n!

+ ...

If we integrate this general term over θ = 0 ... 2π , then, according to the above
lemmas, the result is zero for n is odd. And for n = 2m is even it becomes:

... +

[
rρ/σ2

]2m
(2m)!

(2m)!
(2mm!)2

2π + ...

Thus the integrals over ρ are of the form:

... +

[
r/σ2

]2m
(2mm!)2

2π
∫ ∞

0

e−
1
2 (ρ/σ)2

ρ2m dρ + ...

Where, according to the lemmas:∫ ∞
0

e−
1
2 (ρ/σ)2

ρ2m dρ =
1
2

√
2π

(2m)!
2mm!

σn+1

Collecting terms:

e−
1
2 (r/σ)2

2πσ2

[
r/σ2

]2m
(2mm!)2

2π
1
2

√
2π

(2m)!
2mm!

σn+1

Hence the m-th term in the series expansion becomes:

e−
1
2 (r/σ)2

1
2

√
2π
σ

1
m!

(2m)!
4mm!m!

[
1
2

( r
σ

)2
]m

Where it is noted that 2m(2m− 1) < 4m. Therefore:

(2m)!
4mm!m!

<
4mm!m!
4mm!m!

= 1
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Which makes that the m-th term in the series expansion is less than:

e−
1
2 (r/σ)2

1
2

√
2π
σ

1
m!

[
1
2

( r
σ

)2
]m

Summing up to:

e−
1
2 (r/σ)2

1
2

√
2π
σ

e+ 1
2 (r/σ)2

=
1
2

√
2π
σ

It is concluded that the series must converge and that the end-result will be
smaller than 1

2

√
2π/σ. The end-result is:

1/r(r) = e−
1
2 (r/σ)2

1
2

√
2π
σ

{
1 +

∞∑
m=1

1
m!

(2m)!
4mm!m!

[
1
2

( r
σ

)2
]m}

Whole Sperical Field

The whole renormalized sperical field is given by:

1/r2(x, y, z) =
∫∫∫

e−
1
2 [(x−ξ)2+(y−η)2+(z−ζ)2]/σ2

(σ
√

2π)3/2(ξ2 + η2 + ζ2)
dξ dη dζ

We seek for a simplification of this expression. Transform to spherical coordi-
nates by ξ = ρ cos(φ) sin(θ) , η = ρ sin(φ) sin(θ) and ζ = ρ cos(θ). Since the
whole problem is sperically symmetric, it’s sufficient to calculate the field in the
direction of the z-axis only: x = 0 , y = 0 , z = r :

1/r2(r) =
∫∫∫

e−
1
2 [(ρ sin(θ))2+(r−ρ cos(θ))2]/σ2

(σ
√

2π)3/2ρ2
dρ ρ sin(θ)dφ ρdθ =

e−
1
2 (r/σ)2

(σ
√

2π)3/2

∫ ∞
0

e−
1
2 (ρ/σ)2

[∫ π

0

e(rρ cos(θ))/σ2
sin(θ) dθ

]
dρ

∫ 2π

0

dφ

Where
∫ 2π

0
dφ = 2π . The singularity disappears by ρ2/ρ2 = 1 . The integral

between square brackets [ ] is:

−
∫ π

0

e(rρ cos(θ))/σ2
d cos(θ) =

∫ +1

−1

erρt/σ
2
dt =

e+rρ/σ2 − e−rρ/σ2

rρ/σ2

And the final expression to be calculated is:

1/r2(r) =
e−

1
2 (r/σ)2

σ2

[
1
2

∫ +∞

−∞

e−
1
2 (ρ/σ)2

σ
√

2π
e+rρ/σ2 − e−rρ/σ2

rρ/σ2
dρ

]
A function sinh(x)/x = (exp(+x)− exp(−x))/(2x) is recognized and expanded
into a power series:(

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
... − 1 + x− x2

2!
+
x3

3!
− x4

4!
+
x5

5!
...

)
/(2x)
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1 +
x2

3!
+
x4

5!
+
x6

7!
+ ...+

x2m

(2m+ 1)!

Herewith the expression between square brackets [ ] becomes:∫ +∞

−∞

e−
1
2 (ρ/σ)2

σ
√

2π

[
1 +

∞∑
m=1

(rρ/σ2)2m

(2m+ 1)!

]
dρ

Exchanging summation and integration gives rise to terms:

(r/σ)2m

(2m+ 1)!

∫ +∞

−∞

e−
1
2 (ρ/σ)2

√
2π

(ρ/σ)2m d(ρ/σ) =

According to the Useful Lemmas:

=
(r/σ)2m

(2m+ 1).(2m)!
(2m)!
2mm!

=

[
1
2 (r/σ)2

]m
(2m+ 1)m!

Thus the end-result is:

1/r2(r) =
e−

1
2 (r/σ)2

σ2

[
1 +

∞∑
m=1

[
1
2 (r/σ)2

]m
(2m+ 1)m!

]

Without the factor (2m+ 1) in the denominator, the outcome would be:

e−
1
2 (r/σ)2

σ2
e+ 1

2 (r/σ)2
=

1
σ2

Thus the series converges and the outcome is less than 1/σ2 everywhere.

Disclaimers

Anything free comes without referee :-(
My English may be better than your Dutch.
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