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Chapter 1

Introduction

Instead of probabilistic number theory one should speak about studying arithmetic
functions with probabilistic methods. First approaches in this direction date back to

• Gauss, who used in 1791 probabilistic arguments for his speculations on the
number of products consisting of exactly k distinct prime factors below a given
bound; the case k = 1 led to the prime number theorem (see [10], vol.10, p.11)
- we shall return to this question in Chapter 16;

• Cesaro, who observed in 1881 that the probability that two randomly chosen
integers are coprime is 6

π2 (see [1]) - we will prove this result in Chapter 4.

In number theory one is interested in the value distribution of arithmetic functions
f : N→ C (i.e. complex-valued sequences). An arithmetic function f is said to be
additive if

f(m · n) = f(m) + f(n) for gcd(m,n) = 1,

and f is called multiplicative if

f(m · n) = f(m) · f(n) for gcd(m,n) = 1;

f is completely additive- and completely multiplicative, resp., when the con-
dition of coprimality can be removed (the symbol gcd(m,n) stands, as usual, for
the greatest common divisor of the integers m and n). Obviously, the values of
additive or multiplicative functions are determined by the values on the prime pow-
ers, or even on the primes when the function in question is completely additive or
completely multiplicative. But prime number distribution is a difficult task.

We shall give two important examples. Let the prime divisor counting func-
tions ω(n) and Ω(n) of a positive integer n (with and without multiplicities, resp.)
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be defined by
ω(n) =

∑
p|n

1 and Ω(n) =
∑
p|n

ν(n; p),

resp., where ν(n; p) is the exponent of the prime p in the unique prime factorization
of n:

n =
∏
p

pν(n;p);

here and in the sequel p denotes always a prime number (we recall that p|n means
that the prime p divides the integer n, and when this notation occurs under a product
or a sum, then the product or the summation is taken over all p which divide n).
Obviously, n is a prime number if and only if Ω(n) = 1. Therefore, the distribution
of prime numbers is hidden in the values of Ω(n).

We note

Lemma 1.1 ω(n) is an additive, and Ω(n) is a completely additive arithmetic func-
tion.

Exercise 1.1 (i) Prove the lemma above.

(ii) Give examples of multiplicative and completely multiplicative arithmetic func-
tions.

When we investigate arithmetic functions we should not expect exact formulas.
Usually, the values f(n) are spread too widely. For example, Euler’s totient ϕ(n)
counts the number of prime residue classes mod n:

ϕ(n) := ]{1 ≤ a ≤ n : gcd(a, n) = 1}.

It was proved by Schinzel [26] that the values ϕ(n+1)
ϕ(n)

, n ∈ N, lie everywhere dense
on the positive real axis. Further, it is easy to see that

lim inf
n→∞

ϕ(n)

n
= 0 and lim sup

n→∞

ϕ(n)

n
= 1.(1.1)

Exercise 1.2 (i) Prove the identity

ϕ(n) = n
∏
p|n

(
1−

1

p

)
.

In particular, ϕ(n) is multiplicative.
(Hint: remind that am+ bn runs through a complete residue system modmn
when a and b run through complete residue systems mod n and mod m, resp.,
if m and n are coprime; see for this and for some basics on congruences and
residues [14], §V.)
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(ii) Prove formulae (1.1).
(Hint: make use of formula (2.3) below.)

(iii) Try to find lower and upper bounds for ω(n) and Ω(n).

In our studies on the value distribution of arithmetic functions we are restricted
to asymptotic formulas. Hence, we need a notion to deal with error terms. We write

f(x) = O(g(x)) and f(x)� g(x),

resp., when there exists a positive function g(x) such that

lim sup
x→∞

|f(x)|

g(x)

exists. Then the function f(x) grows not faster than g(x) (up to a multiplicative
constant), and, hopefully, the growth of the function g(x) is easier to understand
than the one of f(x), as x → ∞. This is not only a convenient notation due to
Landau and Vinogradov, but, in the sense of developping the right language, an
important contribution to mathematics as well.

We illustrate this with an easy example. What is the order of growth of the
truncated (divergent) harmonic series ∑

n≤x

1

n
,

as x→∞? Obviously, for n ≥ 2,

1

n
<
∫ n

n−1

dt

t
<

1

n − 1
.

Denote by [x] the maximum over all integers ≤ x, then, by summation over 2 ≤ n ≤
[x],

[x]∑
n=2

1

n
<
∫ [x]

1

dt

t
<

[x]−1∑
n=1

1

n
.

Therefore integration yields∑
n≤x

1

n
=
∫ x

1

dt

t
+O(1) = log x+O(1);(1.2)

here and in the sequel log denotes always the natural logarithm, i.e. the logarithm
to the base e = exp(1). We learned above an important trick which we will use
in the following several times: the sum over a sufficiently smooth function can be
considered - up to a certain error - as a Riemann sum and its integral, resp., which
is hopefully calculable.
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Exercise 1.3 Prove for x→∞ that

(i) the number of squares n2 ≤ x is
√
x+O(1);

(ii) log x� xε for any ε > 0;

(iii) xm � exp(x) for any m > 0;

(iv)
∑
n≤x n = 1

2
x2 +O(x).

We return to number theory. In 1917 Hardy and Ramanujan [13] discovered
the first deep result on the prime divisor counting function, namely that for fixed
δ ∈ (0, 1

2
) and N ≥ 3

1

N
]{n ≤ N : |ω(n)− log log n| > (log logn)

1
2

+δ} �
1

(log logN)2δ
.(1.3)

Since the right hand side above tends to zero, as N → ∞, the values of ω(n) with
n ≤ N are concentrated around log log n (the set of integers n, for which ω(n)
deviates from log log n, has zero density, in the language of densities; see Chapter
2). For example, a 50-digit number has on average only about 5 distinct prime
divisors!

Moreover, Hardy and Ramanujan proved with similar arguments the corre-
sponding result for Ω(n). Unfortunately, their approach is complicated and not
extendable to other functions. In 1934 Turán [31] found a new proof based on the
estimate ∑

n≤N

(ω(n)− log log n)2 � N log logN,(1.4)

and an argument similar to Čebyšev’s proof of the law of large numbers in prob-
ability theory (which was unknown to the young Turán). His approach allows
generalizations (and we will deduce the Hardy-Ramanujan result (1.3) as an im-
mediate consequence of a much more general result which holds for a large class of
additive functions, namely the Turán-Kubilius inequality; see Chapter 6). The
effect of Turán’s paper was epoch-making. His ideas were the starting point for
the development of probabilistic number theory in the following years.

To give finally a first glance on the influence of probabilistic methods on number
theory we mention one of its highlights, discovered by Erdös and Kac [7] in 1939,
namely that ω(n) satisfies (after a certain normalization) the Gaussian error law:

lim
N→∞

1

N
]

{
n ≤ N :

ω(n) − log logN
√

log logN
≤ x

}
=

1
√

2π

∫ x

−∞
exp

(
−
τ 2

2

)
dτ.(1.5)
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Therefore, the values ω(n) are asymptotically normally distributed with expectation
log log n and standard deviation

√
log log n (this goes much beyond (1.3); we will

prove a stronger version of (1.5) in Chapter 13).
This classical result has some important implications to cryptography. For an

analysis of the expected running time of many modern primality tests and factor-
ization tests one needs heuristical arguments on the distribution of prime numbers
and so-called smooth numbers, i.e. numbers which have only small prime divisors
(see [27], §11).

For a deeper and more detailed history of probabilistic number theory read the
highly recommendable introductions of [6] and [18].
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Chapter 2

Densities on the set of positive
integers

It is no wonder that probabilistic number theory has its roots in the 1930s. Only
in 1933 Kolmogorov gave the first widely accepted axiomization of probability
theory.

We recall these basics. A probability space is a triple (Ω,B,P) consisting of
the sure event Ω (a non-empty set), a σ-algebra B (i.e. a system of subsets of Ω,
for example, the power set of Ω), and a probability measure P, i.e. a function
P : B → [0, 1] satisfying

• P(Ω) = 1,

• P(A) ≥ 0 for all A ∈ B,

• P (
⋃∞
n=1 An) =

∑∞
n=1 P(An) for all pairwise disjoint An ∈ B.

Then, P(A) is the probability of A ∈ B. We say that two events A,B ∈ B are
independent if

P(A ∩B) = P(A) ·P(B).

Based on Kolmogorov’s axioms one can start to define random variables, their
expectations and much more to build up the powerful theory of probability (see [16]
for more details).

But our aim is different. We are interested to obtain knowledge on the value
distribution of arithmetic functions. The first idea is to define a probability law
on the set of positive integers. However, we are restricted to be very careful as
the following statement shows: by intuition we expect that the probability, that a
randomly chosen integer is even, equals 1

2
, but:
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Theorem 2.1 There exists no probability law on N such that

P(aN) =
1

a
(a ∈ N),(2.1)

where aN := {n ∈ N : n ≡ 0 mod a}.

Proof via contradiction. By the Chinese remainder theorem (see [14], §VIII.1), one
has for coprime integers a, b

aN ∩ bN = abN.
Now assume additionally that P is a probability measure on N satisfying (2.1), then

P(aN ∩ bN) = P(abN) =
1

ab
= P(aN) ·P(bN).

Thus, the events aN and bN, and their complements

Na := N \ aN and Nb := N \ bN,

resp., are independent. Furthermore

P(Na ∩Nb) = (1−P(aN))(1−P(bN)) =
(
1−

1

a

)(
1−

1

b

)
.

By induction, we obtain for arbitrary integers m < x

P({m}) ≤ P

 ⋂
m<p≤x

Np

 =
∏

m<p≤x

(
1−

1

p

)
;(2.2)

here the inequality is caused by m ∈ Np for all p > m). In view to the unique prime
factorization of the integers and (1.2) we get

∏
p≤x

(
1 +

1

p
+

1

p2
+ . . .

)
≥
∑
n≤x

1

n
= log x+O(1).

Hence, by the geometric series expansion,

∏
p≤x

(
1−

1

p

)
≤

1

log x+O(1)
.(2.3)

This leads with x→∞ in formula (2.2) to P({m}) = 0, giving the contradiction. •

In spite of that we may define a probability law on N as follows. Assume that

∞∑
n=1

λn = 1 with 0 ≤ λn ≤ 1,
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then we set for any sequence A ⊂ N

P(A) =
∑
n∈A

λn.

Obviously, this defines a probability measure. Unfortunately, the probability of a
sequence depends drastically on its initial values (since for any ε > 0 there exists
N ∈ N such that P({1, 2, . . . , N}) ≥ 1− ε).

To construct a model which fits more to our intuition we need the notion of
density. Introducing a divergent series

∞∑
n=1

λn =∞ with λn ≥ 0,

we define the density d(A) of a sequence A of positive integers to be the limit
(when it exists)

d(A) = lim
x→∞

∑
n≤x;n∈A λn∑
n≤x λn

.(2.4)

This yields not a measure on N (since sequences do not form a σ-algebra, and
densities are not subadditive). Nevertheless, the concept of density allows us to
build up a model which matches to our intuition. Putting λn = 1 in (2.4), we obtain
the natural density (when it exists)

dA = lim
x→∞

1

x
]{n ≤ x : n ∈ A};

moreover, the lower and upper natural density are given by

dA = lim inf
x→∞

1

x
]{n ≤ x : n ∈ A} and dA = lim sup

x→∞

1

x
]{n ≤ x : n ∈ A},

respectively. We give some examples. Any arithmetic progression n ≡ b mod a has
the natural density

lim
x→∞

1

x

([
x

a

]
+O(1)

)
=

1

a
,

corresponding to our intuition.

Exercise 2.1 Show that

(i) the sequence a1 < a2 < . . . has natural density α ∈ [0, 1] if, and only if,

lim
n→∞

n

an
= α;

(Hint: for the implication of necessity note that n = ]{j : aj ≤ an}.)
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(ii) the sequence A of positive integers n with leading digit 1 in the decimal expan-
sion has no natural density, since

dA =
1

9
<

5

9
= dA.

We note the following important(!) connection between natural density and
probability theory: if νN denotes the probability law of the uniform distribution
with weight 1

N
on {1, 2, . . . , N}, i.e.

νNA =
∑
n∈A

λn with λn =

{
1
N

if n ≤ N,
0 if n > N,

then (when the limit exists)

lim
N→∞

νNA = lim
N→∞

1

N
]{n ≤ N : n ∈ A} = dA.

Therefore, the natural density of a sequence is the limit of its frequency in the first
N positive integers, as N →∞.

Setting λn = 1
n

in (2.4), we obtain the logarithmic density

δA := lim
x→∞

1

log x

∑
n≤x
n∈A

1

n
;

the lower and upper logarithmic density are given by

δA = lim inf
x→∞

1

log x

∑
n≤x
n∈A

1

n
and δA = lim sup

x→∞

1

log x

∑
n≤x
n∈A

1

n
,

respectively; note that the occuring log x comes from (1.2).

Exercise 2.2 Construct a sequence which has no logarithmic density.

The following theorem gives a hint for the solution of the exercise above.

Theorem 2.2 For any sequence A ⊂ N,

dA ≤ δA ≤ δA ≤ dA.

In particular, a sequence with a natural density has a logarithmic density as well,
and both densities are equal.
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Before we give the proof we recall a convenient technique in number theory.

Lemma 2.3 (Abel’s partial summation) Let λ1 < λ2 < . . . be a divergent se-
quence of real numbers, define for αn ∈ C the function A(x) =

∑
λn≤x αn, and let

f(x) be a complex-valued, continuous differentiable function for x ≥ λ1. Then∑
λn≤x

αnf(λn) = A(x)f(x)−
∫ x

λ1

A(u)f ′(u) du.

For those who are familiar with the Riemann-Stieltjes integral there is nearly
nothing to show. Nevertheless,

Proof. We have

A(x)f(x)−
∑
λn≤x

αnf(λn) =
∑
λn≤x

αn(f(x)− f(λn)) =
∑
λn≤x

∫ x

λn
αnf

′(u) du.

Since λ1 ≤ λn ≤ u ≤ x, changing integration and summation yields the assertion. •

Proof of Theorem 2.2. Defining A(x) =
∑
n≤x,n∈A 1, partial summation yields,

for x ≥ 1,

L(x) :=
∑
n≤x
n∈A

1

n
=
A(x)

x
+
∫ x

1

A(t)

t2
dt(2.5)

For any ε > 0 exists a t0 such that, for all t > t0,

dA− ε ≤
A(t)

t
≤ dA+ ε.

Thus, for x > t0,

(dA− ε)(log x− log t0) = (dA− ε)
∫ x

t0

dt

t
≤
∫ x

1

A(t)

t2
dt,

and ∫ x

1

A(t)

t2
dt ≤

∫ t0

1

dt

t
+ (dA+ ε)

∫ x

t0

dt

t
= (dA+ ε)(log x− log t0) + log t0.

In view to (2.5) we obtain

(dA− ε)

(
1−

log t0
log x

)
≤
L(x)

log x
−

A(x)

x log x
≤ (dA+ ε)

(
1−

log t0
log x

)
+

log t0
log x

.

Taking lim inf and lim sup, as x→∞, and sending then ε→ 0, the assertion of the
theorem follows. •
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Exercise 2.3 Show that the existence of the logarithmic density does not imply the
existence of natural density.
(Hint: have a look on the sequence A in Exercise 2.1.)

Taking λn = λn(σ) = n−σ in (2.4), we define the analytic density of a sequence
A ⊂ N by the limit (when it exists)

lim
σ→1+

1

ζ(σ)

∑
n∈A

1

nσ
,(2.6)

where

ζ(s) :=
∞∑
n=1

1

ns
=
∏
p

(
1−

1

ps

)−1

(2.7)

is the famous Riemann zeta-function; obviously the series converges for s > 1
(resp., from the complex point of view, in the half plane Re s > 1). Note that
the equality between the infinite series and the infinite product is a consequence
of the unique prime factorization in Z (for more details see [30], §II.1). By partial
summation it turns out that one may replace the reciprocal of ζ(σ) in (2.6) by the
factor σ−1. We leave this training on the use of Lemma 2.3 to the interested reader.

Exercise 2.4 Write s = σ + it with i :=
√
−1 and σ, t ∈ R. Prove for σ > 0

ζ(s) =
s

s− 1
− s

∫ ∞
1

x− [x]

xs+1
dx.

In particular, ζ(s) has an analytic continuation to the half plane σ > 0 except for a
simple pole at s = 1 with residue 1.
(Hint: partial summation with

∑
N<n≤M n−s; the statement about the analytic con-

tinuation requires some fundamentals from the theory of functions.)

The analytic and arithmetic properties of ζ(s) make the analytic density very
useful for a plenty of applications. We note

Theorem 2.4 A sequence A of positive integers has analytic density if and only if
A has logarithmic density; in this case the two densities are equal.

A proof can be found in [30], §III.1.
We conclude with a further density, which differs from the above given exam-

ples, but is very useful in questions concerning the addition of sequences of positive
integers, defined by

A+ B := {a+ b : a ∈ A, b ∈ B}.
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The Schnirelmann density is defined by

σ(A) = inf
n≥1

1

n
]{m ≤ n : m ∈ A}.

σ(A) stresses the initial values in the sequence A. For the addition of sequences one
has Mann’s inequality

σ(A+ B) ≥ min{1, σ(A)σ(B)};

the interested reader can find a proof of this result and its implication to problems
in additive number theory (for example, Waring’s problem of the representation
of posiitve integers as sums of k-th powers, or the famous Goldbach conjecture
which asks whether each even positive integer is the sum of two primes or not) in
[12], §I.2.

As we will see in the sequel, the concept of density makes it possible in our
investigations on the value distribution of an arithmetic function to exclude extremal
values, and to have a look on its normal behaviour.
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Chapter 3

Limiting distributions of
arithmetic functions

We recall from probability theory some basic notions. A random variable on
a probability space (Ω,B,P) is a measurable function X defined on Ω. When,
for example, Ω = R, then the function F (x) := P(X(ω) ∈ (−∞, x]) contains a
lot of information about the random variable X and its values X(ω), ω ∈ Ω. A
distribution function is a non-decreasing, right-continuous function F : R →
[0, 1], satisfying

F(−∞) = 0 and F(+∞) = 1.

Denote by D(F) and C(F) the set of discontinuity points and continuity points of
F, respectively. Obviously, D(F) ∪ C(F) = R. Each discontinuity point z has the
property F(z + ε) > F(z − ε) for any ε > 0 (the converse is not true). Write
D(F) = {zk}, then the function

F(z) =
∑
zk≤z

(F(zk)− F(zk−))

increases exclusively for z = zk, and is constant in any closed interval free of dis-
continuity points zk (it is a step-function). If D(F) is not empty, then F is up to a
multiplicative constant a distribution function; such a distribution function is called
atomic. Obviously, the function F−F is continuous. A distribution function F is
said to be absolutely continuous if there exists a positive, Lebesgue-integrable
function h with

F(z) =
∫ z

−∞
h(t) dt.
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Finally, a distribution function F is purely singular if F is continuous with support
on a subset N ⊂ R with Lebesgue measure zero, i.e.∫

N
dF(z) = 1.

We note:

Theorem 3.1 (Lebesgue) Each distribution function F has a unique representa-
tion

F = α1F1 + α2F2 + α3F3,

where α1, α2, α3 are non-negative constants with α1 + α2 + α3 = 1, and where F1 is
absolutely continuous, F2 is purely singular and F3 is atomic.

The proof follows from the observations above and the Theorem of Radon-

Nikodym; see [30], §III.2 and [16], §28.
The next important notion is weak convergence. We say that a sequence {Fn}

of distribution functions converges weakly to a function F if

lim
n→∞

Fn(z) = F(z) for all z ∈ C(F),

i.e. pointwise convergence on the set of continuity points of the limit.
We give an interesting example from probability theory (without details). Let

(Xj) be a sequence of independent and identically distributed random variables with
expectation µ and variance σ2 ∈ (0,∞). By the central limit theorem (see [16], §21),
the distribution functions of the sequence of random variables

Yn :=
1
√
nσ2

 n∑
j=1

Xj − nµ


converge weakly to the standard Normal distribution

Φ(x) :=
1
√

2π

∫ x

−∞
exp

(
−
τ 2

2

)
dτ(3.1)

(with expectation 0 and variance 1). In particular, we obtain for a sequence of
independent random variables Xj with

P(Xj = −1) = P(Xj = +1) =
1

2

for the random walk {Zn}, given by

Z0 := 0 and Zn+1 := Zn +Xn (n ∈ N),
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that

lim
n→∞

P

(
Zn√
n
< x

)
= Φ(x).(3.2)

The distribution functions of the Zn are atomic whereas their limit is absolutely
continuous. Note that one can construct Brownian motion as a certain limit of
random walks; see [9], §VI.6.

We return to probabilistic number theory. An arithmetic function f : N → C
may be viewed as a sequence of random variables

fN = (f, νN)

which takes the values f(n), 1 ≤ n ≤ N , with probability 1
N

, i.e. the uniform
distribution νN on the set {n : n ≤ N}. The fundamental question is: does there
exist a distribution law, as N →∞?

Therefore, we associate to an arithmetic function f for each N ∈ N the atomic
distribution function

FN(z) := νN{n : f(n) ≤ z} =
1

N
]{n ≤ N : f(n) ≤ z}.(3.3)

We say that f possesses a limiting distribution function F if the sequence FN,
defined by (3.3), converges weakly to a limit F, and if F is a distribution function.
Then f is said to have a limit law.

An arithmetic function f is completely determined by the sequence of the asso-
ciated FN, defined by (3.3). However, we may hope to obtain sufficiently precise
knowledge on the global value distribution of f when its limiting distribution func-
tion (when it exists) can be described adequately precise.

Important for practical use is the following

Theorem 3.2 Let f be a real-valued arithmetic function. Suppose that for any
positive ε there exists a sequence aε(n) of positive integers such that

(i) limε→0 lim supT→∞ d{n : aε(n) > T} = 0,

(ii) limε→0 d{n : |f(n) − f(aε(n))| > ε} = 0, and

(iii) for each a ≥ 1 the density d{n : aε(n) = a} exists.

Then f has a limit law.
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Before we give the proof we recall some useful notation. Related to the O-
notation, we write

f(x) = o(g(x)),

when there exists a positive function g(x) such that

lim
x→∞

|f(x)|

g(x)
= 0.

In view to Exercises 1.2 and 1.3 do

Exercise 3.1 Show for any ε > 0

(i) log x = o(xε) and xε = o(exp(x)), as x→∞;

(ii) ϕ(n)
n1+ε = o(1), as n→∞.

We return to our observations on limit laws for arithmetic functions to give the

Proof of Theorem 3.2. Let ε = ε(η) and T = T (ε) be two positive functions
defined for η > 0 with

lim
η→0+

ε(η) = 0 and lim
η→0+

T (ε(η)) =∞

such that d{n : aε(n) > T} ≤ η. Further, define

F (z, η) =
∑

a≤T (ε)
f(a)≤z

d{n : aε(n) = a} and F(z) = lim sup
η→0

F (z, η).

With FN, given by (3.3), it follows in view to the conditions of the theorem that,
for any z ∈ C(F),

FN(z) ≤
1

N
]{n ≤ N : aε(n) ≤ T (ε), f(aε(n)) ≤ z + ε}

+
1

N
]{n ≤ N : aε(n) > T (ε)}

+
1

N
]{n ≤ N : |f(n) − f(aε(n))| > ε}

= F(z + ε, η) + o(1),

as N →∞; recall that the notation o(1) stands for some quantity which tends with
N →∞ to zero. Therefore,

lim sup
N→∞

FN(z) ≤ lim sup
η→0

F (z + ε(η), η) = F(z),
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and, analogously,

lim inf
N→∞

FN(z) ≥ lim sup
η→0

F (z + ε(η), η) = F(z);

here we used that F (z, η) is non-decreasing in z, and that z ∈ C(F). Thus, FN con-
verges weakly to F, and by normalization we may assume that F is right-continuous.
Since

F(z) = lim
N→∞

FN(z) for z ∈ C(F),

we have 0 ≤ F(z) ≤ 1. For ε > 0 choose z ∈ C(F) with z > max{f(a) : a ≤
T (ε)}+ ε. Then f(n) > z implies either

aε(n) > T or |f(n) − f(aε(n))| > ε.

In view to the conditions of the theorem the corresponding density 1− F(z) tends
with η → 0+ to zero. This gives F(+∞) = 0, and F(−∞) = 0 can be shown
analogously. Thus F is a limiting distribution function. •

We give an application:

Theorem 3.3 The function ϕ(n)
n

possesses a limiting distribution function.

Sketch of proof. For ε > 0 let

aε(n) :=
∏

p|n;p≤ε−2

pν(n;p) = n ·
∏

p|n;p>ε−2

p−ν(n;p).

Therefore, one finds with a simple sieve-theoretical argument, for any a ∈ N,

]

n ≤ N : a =
∏

p|n; p≤ε−2

pν(n;p)

 = ]

n ≤ N :
n

a
=

∏
p|n; p>ε−2

pν(n;p)


=

N

a

 ∏
p≤ε−2

(
1−

1

p

)
+ o(1)


(for details have a look on the sieve of Eratosthenes in [30], §I.4). Thus, condition
(iii) of Theorem 3.2 holds. Further,∣∣∣∣∣ϕ(n)

n
−
ϕ(aε(n))

aε(n)

∣∣∣∣∣ ≤ ∑
p|n

p>ε−2

1

p
,
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which yields condition (ii). Finally,

∑
n≤N

log aε(n)� log
1

ε
·
∑
n≤x

∑
p|n;p≤ε−2

ν(n; p)� x

(
log

1

ε

)2

,

which implies (i). Hence, applying Theorem 3.2, yields the existence of a limiting

distribution function for ϕ(n)
n

. •

For more details on Euler’s totient and its limit law see [17], §4.2. In Chapter
10 we will get to know a more convenient way to obtain information on the existence
of a limit law and the limiting distribution itself.
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Chapter 4

Expectation and variance

Now we introduce, similarly to probability theory, the expectation and the vari-
ance of an arithmetic function f with respect to the uniform distribtuion νN by

EN(f) :=
∫ ∞
−∞

z dFN(z) =
1

N

∑
n≤N

f(n)

and

VN(f) :=
∫ ∞
−∞

(z − EN(f))2 dFN(z) =
1

N

∑
n≤N

(f(n) − EN(f))2,

resp., where FN is defined by (3.3).

We give an example. In (1.1) we have seen that limn→∞
ϕ(n)
n

does not exist.

Actually, if we replace ϕ(n)
n

by its expectation value EN, then the corresponding
limit exists.

Theorem 4.1 (Mertens, 1874) As N →∞,

∑
n≤N

ϕ(n)

n
=

6

π2
N +O(logN).

In particular,

lim
N→∞

EN

(
ϕ(n)

n

)
=

6

π2
= 0.607 9 . . . .

Moreover, we are able to give Cesaro’s statement on coprime integers, mentioned
in the introduction. His interpretation of the theorem above is that the probability
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that two randomly chosen integers are coprime equals

d{(a, b) ∈ N2 : gcd(a, b) = 1} = lim
N→∞

EN

(
]{a ≤ n : gcd(a, n) = 1}

]{a ≤ n}

)

= lim
N→∞

EN

(
ϕ(n)

n

)
=

6

π2
.

Before we give the proof of Theorem 4.1 we recall some well-known facts from
number theory. The Möbius µ-function is defined by

µ(n) =

{
(−1)ω(n) if ω(n) = Ω(n),
0 otherwise.

Integers n with the property ω(n) = Ω(n) are called squarefree. µ(n) vanishes
exactly on the complement of the squarefree numbers.

Exercise 4.1 (i) Prove that µ is multiplicative.

(ii) Show

∑
d|n

µ(d) =

{
1 if n = 1,
0 else.

(4.1)

(Hint: use the multiplicativity of µ.)

Proof of Theorem 4.1. Using (4.1), we find

ϕ(n) =
∑
a≤n

∑
d|gcd(a,n)

µ(d) =
∑
d|n

µ(d)
∑
a≤n
d|a

1 =
∑
d|n

µ(d)
n

d
.

This yields

∑
n≤N

ϕ(n)

n
=

∑
n≤N

∑
d|n

µ(d)

d
=
∑
d≤N

µ(d)

d

(
N

d
+O(1)

)

= N
∞∑
d=1

µ(d)

d2
+O

N ∑
d>N

1

d2
+
∑
d≤N

1

d

 .(4.2)

Again with (4.1) we get

∞∑
b=1

1

b2
·
∞∑
d=1

µ(d)

d2
=
∞∑
n=1

1

n2

∑
d|n

µ(d) = 1,
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and therefore, in view to (2.7),

∞∑
d=1

µ(d)

d2
=

1

ζ(2)
.

It is well-known that ζ(2) = π2

6
; however, we sketch in Exercise 4.2 below a simple

proof of this classical result. Further, we have

∑
d>N

1

d2
=
∫ ∞
N

dt

t2
+O

(
1

N

)
�

1

N
,

as N →∞. Hence, in view to (1.2), we deduce from (4.2) the assertion. •

Exercise 4.2 (Calabi, 1993) Show that

∞∑
m=0

1

(2m+ 1)2
=

∞∑
m=0

∫ 1

0

∫ 1

0
x2my2m dx dy =

∫ 1

0

∫ 1

0

∞∑
m=0

(xy)2m dx dy

=
∫ 1

0

∫ 1

0

dx dy

1− x2y2
=
π2

8

(Hint: for the last equality use the transformation x = sin u
cos v

, y = sin v
cosu

),

and deduce ζ(2) =
∑∞
n=1

1
n2 = π2

6
.

For a fixed complex number α we define the arithmetic function

σα(n) =
∑
d|n

dα.

It is easily shown that σα(n) is multiplicative. We write traditionally

• divisor function: τ (n) = σ0(n);

• sum of divisors-function: σ(n) = σ1(n).

Exercise 4.3 (i) Prove the identity σα(n) = nασ−α(n);

(ii) Show

σα(n) =

{ ∏
p|n(1 + ν(n; p)) if α = 0,∏
p|n

pα(ν(n;p)+1)−1
pα−1

otherwise;

in particular, σα(n) is multiplicative.
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(iii) Prove, as N →∞,

∑
n≤N

σ(n)

n
= ζ(2)N +O(logN),

and deduce limN→∞EN

(
σ(n)
n

)
= π2

6
.

(iv) What is limN→∞EN(σ−1(n))?

As we have seen above, the mean value 1
N

∑
n≤N f(n) of an arithmetic function

f contains interesting information on the value distribution of f . In the following
chapter we will give further examples, but also draw down the limits.

24



Chapter 5

Average order and normal order

We say that an arithmetic function f has average order g if g is an arithmetic
function such that

lim
N→∞

∑
n≤N f(n)∑
n≤N g(n)

= 1.

Obviously, the above limit can be replaced by the condition EN(f) = EN (g)(1 +
o(1)), as N →∞.

To give a first example we consider the divisor function.

Theorem 5.1 As N →∞,∑
n≤N

τ (n) = N logN +O(N).

In particular, τ (n) has average order logn.

Proof. We have

∑
n≤N

τ (n) =
∑
bd≤N

1 =
∑
b≤N

∑
d≤N

b

1 =
∑
b≤N

(
N

b
+O(1)

)
.

In view to (1.2) we obtain the asymptotic formula of the theorem. Further,

∑
n≤N

logn =
∫ N

1
log udu+O(logN) = N logN +O(N),

which proves the statement on the average order. •

With a simple geometric idea one can improve the above result drastically.
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Exercise 5.1 (Dirichlet’s hyperbola method) Prove the asymptotic formula∑
n≤N

τ (n) = N logN + (2γ − 1)N +O(N
1
2 ),

where γ is the Euler-Mascheroni constant, given by

γ := lim
N→∞

(
N∑
n=1

1

n
− logN

)
= 1−

∫ ∞
1

u− [u]

u2
du = 0.577 . . . .

(Hint: interpret the sum in question as the number of integral lattice points under
the hyperbola bd = N in the (b, d)-plane; the integral representation of γ follows
from manipulating the defining series by partial summation.)

The situation for the prime divisor counting functions is more delicate.

Theorem 5.2 As N →∞,∑
n≤N

ω(n) = N log logN +O(N).

In particular, ω(n) has average order log logn.

For the proof we need some information on the distribution of prime numbers; the
reader having a thorough knowledge of that subject can jump directly to the proof
of Theorem 5.2.

Theorem 5.3 (Mertens, 1874) As x→∞,

∑
p≤x

log p

p
= log x+O(1).

Sketch of proof. Let n ∈ N. By the formula

ν(n!; p) =
∑
k≥1

[
n

pk

]
,(5.1)

we find

logn! =
∑
p≤n

ν(n!; p) log p =
∑
p≤n

∑
k≥1

[
n

pk

]
log p =

∑
p≤n

[
n

p

]
log p+O(n).

By the so-called weak Stirling formula,

log n! = n log n− n+O(log n),(5.2)
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we obtain

∑
p≤n

[
n

p

]
log p = n logn +O(n).(5.3)

Since [
2n

p

]
− 2

[
n

p

]
=

{
1 if n < p ≤ 2n,
0 if p ≤ n,

we find, using formula (5.3) with n and with 2n instead of n,

∑
n<p≤2n

log p =
∑
p≤2n

([
2n

p

]
− 2

[
n

p

])
log p = 2n log(2n)− 2 · n logn+O(n)� n.

Obviously, the same estimate holds with an arbitrary real x instead of n ∈ N.
Furthermore,

ϑ(x) :=
∑
p≤x

log p =
∑
k≥1

∑
x

2k
<p≤ x

2k−1

log p� x.(5.4)

Now, removing the Gauss brackets in (5.3), gives in view to the latter estimate the
assertion of the theorem. •

For the sake of completeness

Exercise 5.2 Prove

(i) formula (5.1);
(Hint: the p-exponent in n! is =

∑
k≥1 k

∑
m≤n

ν(m;p)=k
1.)

(ii) the weak Stirling formula (5.2).
(Hint: express the left hand side by a sum and, up to an error term, an integral,
respectively.)

As an immediate consequence of Mertens’ theorem we deduce

Corollary 5.4 As x→∞,

∑
p≤x

1

p
= log log x+O(1).

In particular, the set of prime numbers has logarithmic density zero: δP = 0.
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Proof. According to Mertens’ theorem 5.3 let A(x) :=
∑
p≤x

logp
p

= log x+O(1).
Then partial summation yields

∑
p≤x

1

p
=

∑
p≤x

log p

p
·

1

log p
=
A(x)

log x
+
∫ x

2

A(u)

u(log u)2
du.

= 1 +O

(
1

log x

)
+
∫ x

2

du

u log u
+O

(∫ x

2

du

u(log u)2

)
,

which gives the asymptotic formula. Consequently,

δP = lim sup
x→∞

1

log x

∑
p≤x

1

p
= lim

x→∞

log log x

log x
= 0.

This proves the corollary. •

Now we are able to give the

Proof of Theorem 5.2. We have

∑
n≤N

ω(n) =
∑
n≤N

∑
p|n

1 =
∑
p≤N

[
N

p

]
= N

∑
p≤N

1

p
+O(N).

Application of Corollary 5.4 yields the asymptotic formula of the theorem. The
statement on the normal order is an easy exercise in integration. •

Exercise 5.3 Prove

(i) As N →∞, ∑
n≤N

Ω(n) = N log logN +O(N);

(ii) Ω(n) has average order log log n.

Arithmetic functions do not necessarily take values in the neighbourhood of their
average orders. For example, a simple combinatorial argument shows that for any
n ∈ N

2ω(n) ≤ τ (n) ≤ 2Ω(n).(5.5)

Since ω(n) and Ω(n) both have average order log logn, one might expect that τ (n)
has many values of order (logn)log 2 while its average order is logn. It seems that
the average order depends too much on extreme values to give deeper insights in the
value distribution of an arithmetic function.
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A fruitful concept in probability theory is the one of almost sure events. Accord-
ing to that we introduce now a notion which allows us to exclude extremal values
from our investigations on the value distribution of arithmetic functions. We say
that an arithmetic function f has normal order g if g is an arithmetic function
such that for any positive ε the inequality

|f(n)− g(n)| ≤ ε|g(n)|

holds on a set of integers n ∈ N with natural density 1; we may write equivalently

f(n) = (1 + o(1))g(n) almost everywhere.

This important notion was introduced by Hardy and Ramanujan in [13], and can
be seen as the first step towards using probabilistic concepts in number theory.

In terms of distribution functions the existence of a normal order can be seen
after a suitable renormalization as the convergence to a certain limit law: assuming
that f, g are positive arithmetic functions, then, f has a normal order g if, and only
if, the distribution functions

νN{n : f(n) ≤ z · g(n)} =
1

N
]{n ≤ N : f(n) ≤ z · g(n)}

converge weakly to the one-point step-function

1[1,∞](z) =

{
1 if 1 ≤ z,
0 else.

Therefore, normal order seems to be the right concept for studying the value distri-
bution of arithmetic functions with probabilistic methods.

We conclude with an easy example which is related to the above observations on
prime number distribution. Define the prime counting function by

π(x) = ]{p ≤ x}.

Then the characteristic function on the prime numbers 1P(n) = π(n)−π(n−1) has
normal order 0. This follows from

Theorem 5.5 (Čebyšev, 1852) As x→∞,

π(x)�
x

log x
.

In particular, the set of prime numbers has natural density zero: dP = 0.
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Proof. In view to (5.4),

ϑ(x) ≥
∑

√
x<p≤x

log p ≥ log
√
x(π(x)− π(

√
x)),

and therefore

π(x) ≤
2ϑ(x)

log x
+ π(
√
x)�

x

log x
,

which proves the estimate in the theorem. Consequently,

dP = lim sup
x→∞

π(x)

x
≤ lim

x→∞

1

log x
= 0,

and the assertion about the natural density follows immediately. •

Actually, Čebyšev proved much more, namely that the estimate

0.956 . . . ≤ π(x)
logx

x
≤ 1.045 . . . .

holds for all sufficiently large x.

Exercise 5.4 (i) Prove that, as x→∞,

π(x)�
x

log x
.

(Hint: consider
∑
αx<p≤x

log p
p

for a sufficiently small α > 0 with regard to

Mertens’ theorem.)
Can you give explicit values for the implicit constants in the formula above as
well as in the one of Theorem 5.5?

(ii) Show that, as N →∞,

1

N

∑
n≤N

(Ω(n)− ω(N)) =
∑
p

1

p(p− 1)
+ o(1).

After having been conjectured by Gauss in 1792 the celebrated prime number
theorem,

π(x) = (1 + o(1))
x

log x
,(5.6)

was proved independently in 1896 by Hadamard and de La Vallée-Poussin; a
proof of this deep result can be found in [30], §II.4; in Chapter 16 we will give an
unconvenient proof of an interesting generalization of the prime number theorem.
Note that we have not used deeper knowledge on prime number distribution - i.e.
Čebyšev’s theorem 5.5 or even the prime number theorem - to prove the mean
value results of this chapter.
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Chapter 6

The Turán-Kubilius inequality

Let {Xj} be a sequence of random variables with expectation value EXj = µ and
variance ≤M <∞, and let ε > 0. Then the weak law of large numbers states that

P

∣∣∣∣∣∣1n
n∑
j=1

Xj − µ

∣∣∣∣∣∣ ≥ ε

 ≤ M

ε2n
,

which tends with n→∞ to zero. This is a fundamental result in probability theory,
justifying the frequency concept of probability. The weak law of lage numbers is an
immediate consequence of the Čebyšev inequality

P(|X − EX| ≥ ε) ≤
σ2

ε2
,

which holds for any random variable X with finite variance σ2. That means, in a
sense, that the best prediction for the value of a random variable is its expectation
value. This idea can be extended to additive arithmetic functions.

An additive arithmetic function f(n) is called strongly additive if f(pk) = f(p)
holds for all primes p and all positive integers k. For example, ω(n) is strongly
additive whereas Ω(n) is not strongly additive. If f is strongly additive, then

EN(f) =
1

N

∑
n≤N

f(n) =
1

N

∑
n≤N

∑
p|n

f(p) =
1

N

∑
p≤N

f(p)

[
N

p

]

=
∑
p≤N

f(p)

p
+O

 1

N

∑
p≤N

f(p)

 ,(6.1)

and we may expect that f(n) has many values of order
∑
p≤N

f(p)
p

.
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However, for an analogue of the Čebyšev inequality we have to define for an
arithmetic function f

E(x) := E(x; f) :=
∑
pk≤x

f(pk)

pk

(
1−

1

p

)
,

D(x) := D(x; f) :=

∑
pk≤x

|f(pk)|2

pk

1
2

,

where D(x) is the non-negative root. These quantities can be interpreted as the
expectation and the deviation of f (but may differ from the expectation EN(f) and
the root of the variance VN(f) of our probabilistic model defined in Chapter 4).

Exercise 6.1 (i) Let f be a strongly additive function. Show that

E(N ; f) =
∑
p≤N

f(p)

p
+O

∑
p≤N

f(p)

p[ logN
log p

]

 .
(This should be compared with (6.1).)

(ii) Show that log ϕ(n)
n

is strongly additive. Do the limits limN→∞EN(log ϕ(n)
n

) and

limN→∞ E(N ; log ϕ(n)
n

) exist?

The following theorem gives an estimate for the difference of the values of
f(n), 1 ≤ n ≤ x, from its expectational value E(x; f) in terms of its deviation D(x; f).

Theorem 6.1 (Turán-Kubilius inequality, 1955) There exists a function ε(x)
with limx→∞ ε(x) = 0 such that the estimate

1

x

∑
n≤x

|f(n)− E(x)|2 ≤ (2 + ε(x))D(x)2(6.2)

holds uniformly for all additive arithmetic functions f and real x ≥ 2.

Proof. In the sequel we denote by q always a prime number. We define

ε(x) =
4

x

 ∑
pkql≤x
p6=q

pkql


1
2

+
4

x

∑
pk≤x

ql≤x

p−kql


1
2

.(6.3)
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By Corollary 5.4,

∑
pk≤x

p−k =
∑
p≤x

1

p
+
∑
pk≤x
k≥2

1

pk
= log log x+O(1),(6.4)

and, by Čebyšev’s theorem 5.5,

∑
ql≤x

ql =
∑
q≤x

∑
l≤ log x

log q

ql �
∑
q≤x

q
logx
log q = xπ(x)�

x2

log x
.

This yields ∑
pk≤x

ql≤x

p−kql � x2 log log x

log x
.

Further,∑
pkql≤x
p6=q

pkql = 2
∑

pkql≤x
p>q

pkql �
∑
pk≤x

pk
∑

p<q≤ x

pk

∑
l≤ log(x/pk)

log q

ql �
∑
pk≤x

pk
∑

p<q≤ x

pk

x

pk

� x
∑
pk≤x

π

(
x

pk

)
,

which is, by Čebyšev’s theorem and (6.4),

�
x2

log x

∑
pk≤x

p−k � x2 log log x

log x
.

This gives in (6.3) the upper bound

ε(x)�

(
log log x

log x

) 1
2

,

which tends to zero as x→∞.
Without loss of generality we may assume that x ∈ N.
First, assume that f is real and non-negative. Then

1

x

∑
n≤x

(f(n) − E(x))2 =
1

x

∑
n≤x

f(n)2 − 2
E(x)

x

∑
n≤x

f(n) + E(x)2.(6.5)
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We have, by the additivity of f ,

1

x

∑
n≤x

f(n)2 =
1

x

∑
n≤x

∑
p|n,q|n

f(pν(n;p))f(qν(n;q))

=
1

x

∑
pk≤x

f(pk)2
∑
n≤x

ν(n;p)=k

1 +
1

x

∑
pkql≤x
p6=q

f(pk)f(ql)
∑
n≤x

ν(n;p)=k,ν(n;q)=l

1.

The first inner sum does not exceed x
pk

while the second inner sum is, by the
inclusion-exclusion principle,

]{n ≤ x : ν(n; p) = k, ν(n; q) = l}

=

[
x

pkql

]
−

[
x

pk+1ql

]
−

[
x

pkql+1

]
+

[
x

pk+1ql+1

]

≤
x

pkql

(
1−

1

p

)(
1−

1

q

)
+ 2.

Thus

1

x

∑
n≤x

f(n)2 ≤ D(x)2 + E(x)2 +
2

x

∑
pkql≤x
p6=q

f(pk)f(ql).(6.6)

Furthermore, we find

1

x

∑
n≤x

f(n) =
1

x

∑
n≤x

∑
p|n

f(pν(n;p)) =
1

x

∑
pk≤x

f(pk)
∑
n≤x

ν(n;p)=k

1.

The inner sum is bounded below by

]{n ≤ x : ν(n; p) = k} =

[
x

pk

]
−

[
x

pk+1

]
≥

x

pk

(
1−

1

p

)
− 1,

from which we deduce that

1

x

∑
n≤x

f(n) ≥ E(x)−
1

x

∑
pk≤x

f(pk).

This and (6.6) give in (6.5)

1

x

∑
n≤x

(f(n) − E(x))2 ≤ D(x)2 +
2

x

∑
pkql≤x
p6=q

f(pk)f(ql) + 2
E(x)

x

∑
pk≤x

f(pk).(6.7)
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Note that the quadratic term E(x)2 is cancelled. By the Cauchy-Schwarz in-
equality, we obtain

E(x) ≤
∑
pk≤x

f(pk)

p
k
2

· p
k
2 ≤ D(x)

∑
pk≤x

p−k

1
2

,

∑
pk≤x

f(pk) =
∑
pk≤x

f(pk)

p
k
2

· p−
k
2 ≤ D(x)

∑
pk≤x

pk

1
2

,

∑
pkql≤x
p6=q

f(pk)f(ql) =
∑

pkql≤x
p6=q

f(pk)

p
k
2

f(ql)

q
l
2

· p
k
2 q

l
2 ≤ D(x)2

 ∑
pkql≤x
p6=q

pkql


1
2

.

This gives in (6.7)

1

x

∑
n≤x

(f(n) − E(x))2 ≤
(
1 +

1

2
ε(x)

)
D(x)2,(6.8)

which is even stronger than the estimate (6.2) in the theorem (by a factor of 2).
Now assume that f is real-valued but takes values of both signs. Then we

introduce the functions f± defined by

f±(pk) = max{±f(pk), 0}.

Obviously, f = f+−f−. Since f+f− vanishes identically, we have f2 = (f+)2+(f−)2,
and we obtain for 1 ≤ n ≤ x

D(x; f)2 = D(x; f+)2 +D(x; f−)2,

(f(n)− E(x; f))2 = (f+(n)− E(x; f+)− (f−(n)− E(x; f−)))

≤ 2(f+(n) − E(x; f+))2 + 2(f−(n)− E(x; f−))2.

Thus, an application of the previous estimate (6.8) gives (6.2).
Finally, when f is complex-valued, then an application of the above estimate to

the real part and the imaginary parts of f seperately yield (6.2). The theorem is
proved. •

In 1983 Kubilius [19] showed that the constant 2 in the Turán-Kubilius in-
equality can be replaced by 3

2
+o(1), and also that this is optimal. On the other side,

the corresponding probabilistic model gives an upper estimate with the constant 1,
which shows not only the similarity but also the discrepancy between probabilistic
number theory and probability theory; for details see [30], §III.4.
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Exercise 6.2 Deduce from the Turán-Kubilius inequality, for sufficiently large
x, the estimate

1

x

∑
n≤x

|f(n)−A(x)|2 ≤ 6D(x)2 , where A(x) :=
∑
pk≤x

f(pk)

pk
.

(Hint: use the Cauchy-Schwarz inequality.)

In the following chapter we shall derive from the Turán-Kubilius inequality
the celebrated Hardy-Ramanujan result (1.3) mentioned in the introduction.
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Chapter 7

The theorem of Hardy-Ramanujan

The expectation of an arithmetic function f is a good candidate for a normal order
of f . The Turán-Kubilius inequality gives a sufficient condition for f(n) to have
normal order E(n; f) ≈ En(f).

Theorem 7.1 Let f be an additive arithmetic function. If

D(N) = o(E(N)),

as N →∞, then E(n) is a normal order for f(n).

Proof. Using the Cauchy-Schwarz inequality, we obtain for
√
N < n ≤ N

|E(N) − E(n)| =

∣∣∣∣∣∣
∑

n<pk≤N

f(pk)

pk

(
1−

1

p

)∣∣∣∣∣∣�
 ∑
√
N<p≤N

p−k
∑
pk≤N

|f(pk)|2

pk

1
2

.

Using Lemma 5.4, we find

∑
√
N<p≤N

1

pk
=

∑
√
N<p≤N

1

p
+O(1) = log logN − log log

√
N +O(1)� 1,

which gives above |E(N) − E(n)| � D(N). Since the right hand side is under the
assumption of the theorem = o(E(N)), it follows that E(n) = E(N)(1 + o(1)) for all
n ≤ N except at most o(N). To prove the assertion of the theorem we may use the
Turán-Kubilius inequality to estimate, for any ε > 0,

νN{n : |f(n) − E(N)| > ε|E(N)|} <
1

N

∑
n≤N

∣∣∣∣∣f(n)− E(N)

εE(N)

∣∣∣∣∣
2

�

∣∣∣∣∣ D(N)

εE(N)

∣∣∣∣∣
2

,
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which is = o(1) by assumption. The theorem is proved. •

Now we apply our results to the prime divisor counting function ω(n). In view
to Theorem 5.2 and Corollary 5.4 (resp. Exercise 6.1):

E(N ;ω) = log logN +O(1) and D(N ;ω)2 = log logN +O(1).

The Turán-Kubilius inequality yields Turán’s estimate (1.4): since ω(n) is non-
negative, we may use (6.8) to obtain

1

N

∑
n≤N

(ω(n)− log logN)2 ≤ log logN +O(1).

Further, Theorem 7.1 gives the normal order of ω(n), and we obtain immediately
the following improvement of (1.3):

Theorem 7.2 (Hardy+Ramanujan, 1917; Turán, 1934) For any ξ(N) →
∞,

νN{n : |ω(n)− log logN | > ξ(N)
√

log logN} � ξ(N)−2,

and
d{n : |ω(n) − log logn| > ξ(N)

√
log logN} = 0.

In particular, log logn is a normal order of ω(n).

It is easy to do the same for Ω(n).

Exercise 7.1 (i) Show that, for any ξ(N)→∞,

νN{n : |Ω(n) − log logN | > ξ(N)
√

log logN} � ξ(N)−2,

and deduce that Ω(n) has normal order log logn;

(ii) calculate EN(Ω) and VN(Ω), and compare these values with E(N ; Ω) and
D(N ; Ω)2.

We continue our discussion on the value distribution of the divisor function
started in Chapter 5. In view to (5.5) we get as an immediate consequence of the
Hardy-Ramanujan results on ω(n) and Ω(n)

Corollary 7.3 We have

τ (n) = (logn)log 2+o(1) almost everywhere.

In particular, log τ (n) has normal order log 2 · log logn.
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That means that the divisor function τ (n) has a normal order different to its average
order log n. This is caused by some extraordinary large values of τ (n).

We say that an arithmetic function f has maximal order g if g is a positive
non-decreasing arithmetic function such that

lim sup
n→∞

f(n)

g(n)
= 1,

and we say that f has minimal order g if g is a positive non-decreasing arithmetic
function such that

lim inf
n→∞

f(n)

g(n)
= 0.

In (1.1) we have seen that the identity n 7→ n is both a minimal and a maximal
order for Euler’s ϕ-function.

Theorem 7.4 A maximal order for log τ (n) is log 2·logn
log logn

.

Proof. By the multiplicativity of τ (n) (see Exercise 4.3),

τ (n) =
∏
p|n

(1 + ν(n; p)) ≤
∏
p≤x
p|n

(1 + ν(n; p))
∏
p>x
p|n

2ν(n;p)

≤

(
1 +

log n

log 2

)x∏
p|n

pν(n;p)


log 2
log x

≤ exp

(
x(2 + log logn) +

log 2 · log n

log x

)
.

The choice x = logn
(log logn)3 yields

τ (n) ≤ exp

(
log 2 · logn

log logn

(
1 +O

(
log log log n

log logn

)))
.

This shows that

lim sup
n→∞

log τ (n) ·
log logn

log 2 · logn
≤ 1.

In order to prove that the above lim sup is also ≥ 1 we have a look on integers with
many prime divisors. Denote by pj the jth prime number (ordered with respect to
their absolute value), and define nk =

∏k
j=1 pj for k ∈ N. Then τ (nk) = 2k, and

log nk =
k∑
j=1

log p ≤ k log pk.
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Since by Exercise 5.4

pk � ϑ(pk) =
k∑
j=1

log pj = log nk,

where the implicit constant does not depend on k, we obtain

log τ (nk) = k · log 2 ≥
log 2 · log nk

log pk
≥

log 2 · log nk
log lognk

(
1 +O

(
1

log lognk

))
.

This shows the theorem. •

Via (5.5) Theorem 7.4 has also an effect on the prime divisor counting functions
(answering one question posed in Exercise 1.2):

Exercise 7.2 Show that

(i) ω(n) has maximal order logn
log logn

;

(ii) Ω(n) has maximal order logn
log 2

.

The value distribution of the divisor function is ruled by the arcsine law.

Theorem 7.5 (Deshouillers+Dress+Tenenbaum, 1979) Uniformly for x ≥
2, 0 ≤ z ≤ 1,

1

x

∑
n≤x

1

τ (n)

∑
d|n
d≤nz

1 =
2

π
arcsin

√
z +O

(
(log x)−

1
2

)
.

Rewriting the asymptotic formula of the theorem, we have

1

x

∑
n≤x

νn{d|n : d ≤ nz} =
2

π
arcsin

√
z +O

(
(log x)−

1
2

)
.

This shows that, on average, an integer has many small (resp., many large) divisors!
This can be proved by the Selberg-Delange method, which we shall derive in
Chapter 15. Nevertheless, the proof is beyond the scope of this course; the interested
reader can find a detailed proof of this result in [30], §II.5, II.6.
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Chapter 8

A duality principle

The Turán-Kubilius inequality has an interesting dual variant.

Theorem 8.1 (Elliott, 1979) The inequality

∑
pk≤N

pk

∣∣∣∣∣∣∣
∑
n≤N

k=ν(n;p)

xn −
1

pk

(
1−

1

p

) ∑
n≤N

xn

∣∣∣∣∣∣∣
2

≤ (2 + o(1))N
∑
n≤N

|xn|
2

holds uniformly for all N , and complex numbers xn, 1 ≤ n ≤ N .

This theorem has several nice consequences as, for example, in the theory of
quadratic residues. Let p be an odd prime, and assume that a ∈ Z is not divis-
ible by p. Then we say that a is a quadratic residue mod p, if the congruence
X2 ≡ a mod p is soluble; otherwise, a is called quadratic non-residue. Elliott

proved for the least pair of consecutive quadratic non-residues modp, the upper
bound

� p
1
4(1−1

2
exp(−10))+ε,

where p ≥ 5, and the implicit constant does not depend on p. For details and
much more on dual versions of the Turán-Kubilius inequality, as for example
their appearance in the theory of the large sieve, see [6], §4.

For the proof of Theorem 8.1 we will make use of

Lemma 8.2 (Duality principle) Let (cnr) be an N ×R matrix with complex en-
tries, and let C be an arbitrary positive constant. Then the following three inequal-
ities are equivalent:
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(i) for all xn ∈ C, ∑
r

∣∣∣∣∣∑
n

cnrxn

∣∣∣∣∣
2

≤ C
∑
n

|xn|
2;

(ii) for all xn, yr ∈ C, ∣∣∣∣∣∑
n,r

cnrxnyr

∣∣∣∣∣
2

≤ C
∑
n

|xn|
2
∑
r

|yr|
2;

(iii) for all yr ∈ C, ∑
n

∣∣∣∣∣∑
r

cnryr

∣∣∣∣∣
2

≤ C
∑
r

|yr|
2.

Proof. It suffices to show the equivalence of (i) and (ii) (since the equivalence of
(ii) and (iii) follows by exchanging the indices r and n).

First, assume that (i) holds. Then, by the Cauchy-Schwarz inequality,∣∣∣∣∣∑
n,r

cnrxnyr

∣∣∣∣∣
2

=

∣∣∣∣∣∑
r

yr
∑
n

cnrxn

∣∣∣∣∣
2

≤
∑
r

|yr|
2
∑
r

∣∣∣∣∣∑
n

cnrxn

∣∣∣∣∣
2

≤ C
∑
n

|xn|
2
∑
r

|yr|
2.

For the converse implication assume that (ii) holds. Let Lr :=
∑
n cnrxn for

r ≤ R. Then, applying (ii) with yr = Lr, yields(∑
r

|Lr|
2

)2

≤ C
∑
n

|xn|
2
∑
r

|Lr|
2,

which implies (i). The lemma is proved. •

Proof of Theorem 8.1. Let f be an arbitrary additive function. For n ∈ N put

r := pk , yr :=
f(r)

r
1
2

, and cnr :=

 r
1
2 − r−

1
2

(
1− 1

p

)
if ν(n; p) = k,

−r−
1
2

(
1− 1

p

)
otherwise.

This gives

f(n)− E(N) =
∑
r|n

n6≡0 mod pr

f(r) −
∑
r≤N

f(r)

r

(
1−

1

p

)
=
∑
r≤N

cnryr.
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Thus, we can rewrite the Turán-Kubilius inequality (6.2) as

∑
n≤N

∣∣∣∣∣∣
∑
r≤N

cnryr

∣∣∣∣∣∣
2

≤ (2 + o(1))N
∑
r≤N

|yr|
2.

Since the yr are arbitrary complex numbers, application of Lemma 8.2 shows that
the inequality ∑

r≤N

∣∣∣∣∣∣
∑
n≤N

cnrxn

∣∣∣∣∣∣
2

≤ (2 + o(1))N
∑
n≤N

|xn|
2

holds for arbitrary complex numbers xn. In view to the definition of the cnr the
assertion of the theorem follows. •

We conclude with an interesting interpretation of the dual form of the Turán-

Kubilius inequality: since

∑
pk≤N

pk ≈
N2

logN
and

1

pk

(
1−

1

p

)
≈ νN{n : ν(n; p) = k},

we may deduce that every sufficiently dense sequence of integers xn is well distributed
among the residue classes n ≡ 0 mod pk.

For deeper knowledge on the value distribution of arithmetic functions we have
to recall some facts from the beginnings of analytic number theory. The reader who
is familiar with these fundamentals may jump to Chapter 10.
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Chapter 9

Dirichlet series and Euler

products

In probability theory many information on random variables can be derived by
studying their generating functions. The same concept applies to number theory as
well (and has even its origins there).

We write s = σ+it with σ, t ∈ R and i :=
√
−1, and associate to every arithmetic

function f : N→ C its Dirichlet series

∞∑
n=1

f(n)

ns
;

here ns is defined by ns = exp(s·logn). The prototype of such series is the Riemann

zeta-function (2.7). First, we consider these series only as formal objects. With
the usual addition and multiplication of series the set of Dirichlet series form
a commutative ring isomorphic to the ring of arithmetic functions R, where the
multiplication is the convolution

(f ∗ g)(n) :=
∑
d|n

f(d)g
(
n

d

)
,

and where the addition is given by superposition.

Exercise 9.1 (i) Prove the identities

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

∞∑
n=1

ϕ(n)

ns
=
ζ(s− 1)

ζ(s)
and

∞∑
n=1

σα(n)

ns
= ζ(s)ζ(s− α);
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(ii) verify that the set of arithmetic functions R is a commutative ring with (mul-
tiplicative) identity

η(n) :=

{
1 if n = 1,
0 if n 6= 1;

(iii) show that an arithmetic function f is a unit in the ring R if and only if
f(1) 6= 0;

(iv) let ε(n) := 1, n ∈ N, and prove for f and F := f ∗ ε ∈ R the Möbius

inversion formula: f = F ∗ µ.

In the case of Dirichlet series with multiplicative coefficients we obtain a prod-
uct representation, the so-called Euler product.

Lemma 9.1 Assume that
∑∞
n=1 |f(n)| < ∞. If f(n) is a multiplicative arithmetic

function, then
∞∑
n=1

f(n) =
∏
p

(1 + f(p) + f(p2) + . . .),

and if f is completely multiplicative, then
∞∑
n=1

f(n) =
∏
p

1

1− f(p)
.

The well-known formula (2.7) is here the standard example. We may extend this
for z ∈ C, z 6= 0, and σ > 1, which leads to

ζ(s)z =
∏
p

(
1−

1

ps

)−z
=
∞∑
n=1

τz(n)

ns
,(9.1)

where τz(n) is the multiplicative function given by τz(1) = 1 and

τz
(
pk
)

=

(
z + k − 1

k

)
:=

1

k!

k∏
j=1

(z + k − j);

this is an immediate consequence of the binomial series expansion in the factors of
the Euler product.

In view to later applications we introduce two more Euler products. Let z ∈ C
with 0 < |z| ≤ 1. Since ω(n) is additive, the arithmetic function zω(n)

ns
is multiplica-

tive, and therefore a simple calculation shows

L(s, z, ω) :=
∞∑
n=1

zω(n)

ns
=
∏
p

(
1 +

∞∑
k=1

z

ps

)
=
∏
p

(
1 +

z

ps − 1

)
,(9.2)

where all series and product representations are valid in the half plane σ > 1 (we
shall return to the question of convergence later on).
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Exercise 9.2 Let z ∈ C with 0 < |z| ≤ 1. Prove, for σ > 1,

L(s, z,Ω) :=
∞∑
n=1

zΩ(n)

ns
=
∏
p

(
1−

z

ps

)−1

.(9.3)

Proof of Lemma 9.1. By the multiplicativity of f(n) and the unique prime
factorization of the integers,∏

p≤x

(1 + f(p) + f(p2) + . . .) =
∑
n

p|n⇒p≤x

f(n).

Since ∣∣∣∣∣∣∣
∞∑
n=1

f(n) −
∑
n

p|n=⇒p≤x

f(n)

∣∣∣∣∣∣∣ ≤
∑
n>x

|f(n)|,

the convergence of
∑∞
n=1 |f(n)| implies the first assertion; the second follows in view

to f(pk) = f(p)k and application of the formula for the geometric series. •

We can obtain new insights on the value distribution of an arithmetic function
by studying the associated Dirichlet series as an analytic function. Since

|ns| = |nσ exp(it logn)| = nσ,

Dirichlet series converge in half planes; it is possible that this half plane is empty,
or that it is the whole complex plane.

Theorem 9.2 Suppose that the series
∑∞
n=1

f(n)
nc

converges for some c ∈ R. Then
the Dirichlet series

F (s) :=
∞∑
n=1

f(n)

ns

converges for any δ > 0 uniformly in

Hδ :=
{
s ∈ C : | arg(s− c)| ≤

π

2
− δ

}
.

In particular, the function F (s) is analytic in the half plane σ > c.

Proof. Let s ∈ Hδ. Partial summation shows, for 0 ≤M < N ,∑
M<n≤N

f(n)

ns
=

∑
M<n≤N

f(n)

nc · ns−c

= N c−s
∑

M<n≤N

f(n)

nc
+ (s− c)

∫ N

M

∑
M<n≤x

f(n)

nc
dx

xs+1−c
.
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By the convergence of
∑∞
n=1

f(n)
nc

, there exists for any ε > 0 an index M0 such that∣∣∣∣∣∣
∑

M<n≤N

f(n)

nc

∣∣∣∣∣∣ < ε for all M ≥M0.

Hence, for those M ,

∑
M<n≤N

f(n)

ns
� ε

(
N c−σ + |s− c|

∫ N

M
xc−σ−1 dx

)

� ε

(
N c−σ +

|s− c|

σ − c
M c−σ

)
� ε

(
1 +

1

sin δ

)
,

since |s − c| < (σ − c) sin δ. This proves the uniform convergence (by fixed δ).
Weierstrass’ theorem states that the limit F (s) of the uniform convergent se-

quence of analytic functions
∑
n≤M

f(n)
ns

, as M → ∞, is analytic itself (see [21],
§V.1). This proves the theorem. •

Exercise 9.3 Assume that the series
∑∞
n=1

f(n)
ns

converges exactly in the (non-
empty) half plane σ > c. Show that the series converges absolutely for σ > c+ 1.

The proof of Theorem 9.2 yields, in the region of absolute convergence,

∞∑
n=1

f(n)

ns
= s

∫ ∞
1

∑
n≤x

f(n)
dx

xs+1
(9.4)

(this should be compared with Exercise 2.4); here and in the sequel we write
∫∞

for limT→∞
∫ T when the limit exists. We are interested in an inversion, i.e. a for-

mula where the transform
∑
n≤x f(n) is expressed by an integral over the associated

Dirichlet series
∑∞
n=1

f(n)
ns

.

Lemma 9.3 Let c and y be positive and real. Then

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 if 0 < y < 1,
1
2

if y = 1,
1 if y > 1.

Proof. First, if y = 1, then the integral in question equals

1

2π

∫ ∞
−∞

dt

c+ it
=

1

π
lim
T→∞

∫ T

0

c

c2 + t2
dt =

1

π
lim
T→∞

arctan
T

c
=

1

2
,

by well-known properties of the arctan-function.
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Secondly, assume that 0 < y < 1 and r > c. Since the integrand is analytic in
σ > 0, Cauchy’s theorem implies, for T > 0,∫ c+iT

c−iT

ys

s
ds =

{∫ r−iT

c−iT
+
∫ r+iT

r−iT
+
∫ c+iT

r+iT

}
ys

s
ds.

It is easily be shown that∫ c±iT

r±iT

ys

s
ds �

1

T

∫ c

r
yσ dσ �

yc

T | log y|
,∫ r+iT

r−iT

ys

s
ds �

yr

r
+ yr

∫ T

1

dt

t
� yr

(
1

r
+ logT

)
.

Sending now r and then T to infinity, the first case follows.
Finally, if y > 1, then we bound the corresponding integrals over the rectangular

contour with corners c± iT,−r± iT , analogously. Now the pole of the integrand at
s = 0 with residue

Res s=0
ys

s
= lim

s→0
s ·

ys

s
= 1

gives via the calculus of residues 2πi as the value for the integral in this case. •

Exercise 9.4 Prove

(i) for α ∈ R, ∫ ∞
−∞

exp(iαu)− exp(−iαu)

iu
du = sgn (α)2π,

where sgn (α) = 0 if α = 0, and = α
|α| otherwise;

(Hint: shift the path of integration into the right half plane by use of Cauchy’s
theorem, and apply Lemma 9.3.)

(ii) for α > 0, ∫ ∞
−∞

(
sinαu

αu

)2

du =
π

α
.

(Hint: partial summation and part (i).)

We deduce from Lemma 9.3

Theorem 9.4 (Perron’s formula) Suppose that the Dirichlet series
∑∞
n=1

f(n)
ns

converges for σ = c absolutely. Then, for x 6∈ Z,

∑
n≤x

f(n) =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

f(n)

ns
xs

s
ds,(9.5)
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and, for arbitrary x,∫ x

0

∑
n≤u

f(n) du =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

f(n)

ns
xs+1

s(s+ 1)
ds.(9.6)

Perron’s formula gives a first glance on the intimate relation between arithmetic
functions (number theory) and their associated Dirichlet series (analysis).

Proof. Obviously, the integral in formula (9.5) equals

∫ c+i∞

c−i∞

∞∑
n=1

f(n)

ns
xs

s
ds =

∞∑
n=1

f(n)
∫ c+i∞

c−i∞

(
x

n

)s ds

s
;

here interchanging integration and summation is allowed by the absolute convergence
of the series. In view to Lemma 9.4 formula (9.5) follows.

In order to prove formula (9.6) we apply (9.5) with f(n)nw, w ≥ 0, instead of
f(n), and obtain

∑
n≤x

f(n)nw =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

f(n)

ns
xs+w

s+ w
ds.

Thus we get by subtraction

∑
n≤x

f(n)(xw − nw) =
1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

f(n)

ns
wxs+w

s(s+ w)
ds.

Obviously, this formula holds for x ∈ N too. We set w = 1, and note∫ x

0

∑
n≤u

f(n) du =
∑
n≤x

f(n)
∫ x

n
du =

∑
n≤x

f(n)(x− n).

Thus we obtain (9.6), and the theorem is shown. •

As an immediate application we note, for 0 < |z| ≤ 1 and c > 1,∫ x

0

∑
n≤u

zω(n) du =
1

2πi

∫ c+i∞

c−i∞
L(s, z, ω)

xs+1

s(s+ 1)
ds;(9.7)

a similar formula holds when we replace ω(n) by Ω(n). Later we shall prove an
asymptotic formula for the arithmetic expression on the left hand side by evaluating
the analytic right hand side.
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Chapter 10

Characteristic functions

Many information on a probability law can be derived by studying the related charac-
teristic function. Let F be a distribution function, then its characteristic function
is given by the Fourier transform of the Stieltjes measure dF(z), namely

ϕF(τ ) :=
∫ ∞
−∞

exp(iτz) dF(z).

This defines a uniformly continuous function on the real line which satisfies, for
τ ∈ R,

|ϕF(τ )| ≤
∫ ∞
−∞

dF(z) = 1 = ϕF(0).

The intimate relationship between the distribution function F and its characteristic
function ϕF is ruled by the following

Lemma 10.1 (Inversion formula) Let F be a distribution function with charac-
tersitic function ϕF. Then, for α, β ∈ C(F),

F(β)−F(α) =
1

2π

∫ ∞
−∞

exp(−iτα)− exp(−iτβ)

iτ
ϕF(τ ) dτ.

In particular, the distribution function is uniquely determined by its charcteristic
function.

Note that the singularity of the integrand in the formula of the above lemma is
removable.

Proof. Without loss of generality α ≤ β. Using Fubini’s theorem, we can rewrite
the integral on the right hand side of the formula in the lemma as∫ ∞

−∞

exp(−iτα)− exp(−iτβ)

iτ

∫ ∞
−∞

exp(iτw) dF(w) dτ
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=
∫ ∞
−∞

∫ ∞
−∞

exp(iτ (w − α))− exp(iτ (w − β))

iτ
dτ dF(w).

By Exercise 9.4 the inner integral equals

1

2

∫ ∞
−∞

exp(iu(w − α))− exp(−iu(w − α))

iu
du

−
1

2

∫ ∞
−∞

exp(iu(w − β))− exp(−iu(w− β))

iu
du

= π(sgn (w − α) − sgn (w − β)),

which is = 2π if α < w < β, and = 0 if w < α or w > β. This leads to the formula
in the lemma. If the distribution function G has the same characteristic function,
then the formula proved above yields F(α) = G(α) for almost all α. Since F and G
both are right-continuous and non-decreasing, we finally obtain F = G. The lemma
is shown. •

This lemma has some powerful consequences which we will use in what follows.

Exercise 10.1 Let h > 0 and let F be a distribution function with characteristic
function ϕF.

(i) Prove, for z ∈ R,

1

h

{∫ z+h

z
−
∫ z

z−h

}
F(t) dt =

1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

exp
(
−
iτz

h

)
ϕF

(
τ

h

)
dτ ;

(Hint: apply Lemma 10.1 to the integrals on the left hand side, and calculate
their characteristic functions by partial integration.)

(ii) show that
1

h

∫ z+h

z
F(t) dt and

1

h

∫ z

z−h
F(t) dt

both define distribution functions.
(Hint: for all ε > 0 there exists an t0 such that F (t) ≥ F (+∞) − ε for all
t ≥ t0.)

It is time to give an example. We note for the standard normal distribution
(3.1):

Lemma 10.2 The characteristic function of the standard normal distribution Φ is
given by

ϕΦ(τ ) = exp

(
−
τ 2

2

)
.
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Proof. By definition,

ϕΦ(τ ) =
∫ ∞
∞

exp(iτz) dΦ(z) =
1
√

2π

∫ ∞
−∞

exp(iτz) exp

(
−
z2

2

)
dz

=
1
√

2π

∫ ∞
−∞

(cos(τz) + i sin(τz)) exp

(
−
z2

2

)
dz

=
1
√

2π

∫ ∞
−∞

cos(τz) exp

(
−
z2

2

)
dz,

since sin(τz) exp(− z2

2
) is an odd function. Differentiation on both sides with re-

spect to τ (which is obviously allowed), and integration by parts (with sin(τz) and
z exp(− z2

2
)), yields

ϕΦ
′(τ ) = −

1
√

2π

∫ ∞
−∞

z sin(τz) exp

(
−
z2

2

)
dz

= −
1
√

2π

∫ ∞
−∞

τ cos(τz) exp

(
−
z2

2

)
dz

= −τϕΦ(τ ).

Therefore, the characteristic function ϕΦ(τ ) solves the differential equation

y′

y
= −τ,

and hence, integration yields

log |ϕΦ(τ )| =
∫ ϕ′Φ
ϕΦ

(τ ) dτ + c′ = −
∫
τ dτ + c′ = −

τ 2

2
+ c,

where c′, c are constants. Taking the exponential gives

ϕΦ(τ ) = exp

(
c−

τ 2

2

)
.

In view to ϕΦ(0) = 1 we obtain c = 0, which finishes the proof. •

The proof above is not straightforward but elementary. It is much easier to find the
characteristic function of the uniform distribution.

Exercise 10.2 Prove that the characteristic function of the uniform distribution ν
on the interval [0, 1] is given by

ϕν(τ ) =
exp(iτ )− 1

iτ
.
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The following theorem links the weak convergence of a sequence of distribu-
tion functions to the pointwise convergence of the corresponding sequence of their
characteristic functions.

Theorem 10.3 (Lévy’s continuity theorem, 1925) Let {Fn} be a sequence of
distribution functions and {ϕFn} the corresponding sequence of their charactersitic
functions. Then Fn converges weakly to a distribution function F if and only if ϕFn

converges pointwise on R to a function ϕ which is continuous at 0. Additionally,
in this case, ϕ is the characteristic function of F, and the convergence of ϕFn to
ϕ = ϕF is uniform on any compact subset.

The following proof is due to Cramér.

Proof. We start with the necessity. If Fn converges weakly to F, then there exists
for any ε > 0 a real number T = T (ε) such that

sup
n∈N

sup
τ∈R

∣∣∣∣∣
∫
|z|>T

exp(iτz) dFn(z)

∣∣∣∣∣ ≤ sup
n∈N

∫
|z|>T

dFn(z) ≤ ε.

Without loss of generality we may assume that ±T ∈ C(F), then∫ T

−T
exp(iτz) dFn(z)→

∫ T

−T
exp(iτz) dF(z),

in any finite τ -interval, as n→∞ (Stieltjes integrals behave sufficiently smooth).
The last integral equals ϕF(τ ) + O(ε), which implies that ϕFn → ϕF uniformly on
any compact subset, as n→∞.

To prove the converse, it is sufficient to show that, if ϕFn converges pointwise to
a limit ϕ, and if ϕ is continuous at 0, then Fn converges weakly to a distribution
function F. By the above given part of the proof it will then follow that ϕ is the
characteristic function of F, and that the convergence ϕFn → ϕF, as n → ∞, is
uniform on compact subsets.

Let Z := {z1, z2, . . .} be a dense subset of R consisting of continuity points of
F and all Fn. Since the values of Fn(zk) lie in [0, 1], the theorem of Bolzano-

Weierstrass yields the existence of a convergent subsequence {Fn1(z1)}, and, by
a standard diagonal argument, there exists a sub-subsequence {Fnn} of {Fn} which
converges on Z. Using the properties of the distribution functions Fn, one can
even find a subsequence {Fnj

} which converges weakly to a non-decreasing right-
continuous function F. Obviously, 0 ≤ F(z) ≤ 1 for all z ∈ R. It remains to show
that F(+∞)−F(−∞) = 1. We have, by Exercise 10.1,

1

h

{∫ h

0
−
∫ 0

−h

}
Fnj

(t) dt =
1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

ϕFnj

(
τ

h

)
dτ.
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Sending j →∞ and applying Lebesgue’s theorem, we arrive at

1

h

{∫ h

0
−
∫ 0

−h

}
F(t) dt =

1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

ϕ
(
τ

h

)
dτ ;

here F is the weak limit of Fnj
, and ϕ is the pointwise limit of ϕFnj

. By Exercise
10.1, we may interpret the left hand side as the difference of distribution functions.
Hence, as h→∞,

F(+∞)− F(−∞) = lim
h→∞

1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

ϕ
(
τ

h

)
dτ.

Since ϕ is bounded and continuous at 0, we may interchange by Lebesgue’s theorem
the limit with the integration and use Exercise 9.4 to obtain

F(+∞)− F(−∞) =
1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

lim
h→∞

ϕ

(
τ

h

)
dτ

= ϕ(0) ·
1

2π

∫ ∞
−∞

(
sin τ

2
τ
2

)2

dτ

= ϕ(0).

Further, ϕ(0) = limn→∞ ϕFnj
(0), and ϕFnj

(0) = 1 for all n ∈ N. Therefore, F(+∞)−

F(−∞) = 1, and the weak limit F of the sequence Fnj
is a distribution function.

Obviously, this holds also for any other weak limit G. But since G has also the
characteristic function ϕ, and distribution functions are uniquely determined by
their characteristic functions, we obtain F = G. Hence any weakly convergent
subsequence of {Fn} converges to the same limit F, and hence, {Fn} itself converges
weakly to F. The theorem is shown. •

For a special class of distribution functions F one can find a quantative estimate
for approximations of F in terms of the corresponding characteristic functions by
the following result. Define for a real-valued function f , given on the compact set
R ∪ {±∞},

‖f‖∞ = max
−∞≤x≤∞

|f(x)|.

Then

Theorem 10.4 (Berry-Esseen inequality, 1941/1945) Let F,G be two distri-
bution functions with characteristic functions ϕF, ϕG. Suppose that G is differen-
tiable and that G′ is bounded on R. Then, for all T > 0,

‖F−G‖∞ �
‖G′‖∞
T

+
∫ T

−T

∣∣∣∣∣ϕF(τ )− ϕG(τ )

τ

∣∣∣∣∣ dτ,
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where the implicit constant is absolute.

We omit the lengthy proof, which, for example, can be found in [30] or in [6], §1, but
give an interesting application to a result mentioned in Chapter 3. The convergence
of the scaled random walk to the normal distribution (3.2) satisfies the quantitative
estimate

P

(
Zn√
n
< x

)
= Φ(x) +O

(
n−

1
2

)
,

as n→∞. For this and other applications we refer to [6], §1 and §3.
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Chapter 11

Mean value theorems

Lévy’s continuity theorem has an important consequence, namely a criterion
whether an arithmetic function possesses a limit law or not.

Corollary 11.1 Let f be a real-valued arithmetic function. Then f possesses a
limit law F if and only if the sequence of functions

1

N

∑
n≤N

exp(iτf(n))

converges with N →∞ pointwise on R to a function ϕ(τ ) which is continuous at 0.
In this case ϕ = ϕF is the characteristic function of F.

Proof. By (3.3) the characteristic function of the distribution function FN of f is

ϕFN
(τ ) =

∫ ∞
−∞

exp(iτz) dFN(z) =
1

N

∑
n≤N

exp(iτf(n)).

Consequently, Lévy’s continuity theorem translates the weak convergence of the dis-
tribution functions to the pointwise convergence of the corresponding characteristic
functions. •

If f is an additive function, then the function n 7→ exp(iτf(n)) is for each fixed
τ a multiplicative arithmetic function. Thus, the problem of the existence of a limit
law for f is equivalent to the problem of the existence of the mean value of a certain
multiplicative function. A complete solution was found by Erdös and Wintner

[8]:

56



Theorem 11.2 (Erdös+Wintner, 1939) A real-valued additive function f(n)
possesses a limit law if and only if the following three series converge simultaneously
for at least one value R > 0:

∑
|f(p)|>R

1

p
,

∑
|f(p)|≤R

f(p)2

p
,

∑
|f(p)|≤R

f(p)

p
.

If this is the case, then the characteristic function of the limiting distribution function
F is given by the convergent product

ϕF(n) =
∏
p

(
1−

1

p

)
∞∑
k=0

exp(iτf(pk))

pk
.

The idea of proof is based on Kolmogorov’s three series theorem on sums of
independent random variables; see [9], §IX.9.

In the following years the question arose when a multiplicative function of mod-
ulus ≤ 1 has a non-zero mean value. The ultimative answer was given by Halász

[11], namely

Theorem 11.3 (Halász, 1968) Let g be a multiplicative function with values in
the unit disc. If there exists some τ ∈ R such that

∑
p

1− Re g(p)p−iτ

p

converges, then

1

x

∑
n≤x

g(n) =
xiτ

1 + iτ

∏
p≤x

(
1−

1

p

)
∞∑
k=0

g(pk)

pk(1+iτ )
+ o(1),

as x→∞. If there exists no τ with the above property, then

1

x

∑
n≤x

g(n) = o(1).

Note that Wirsing [33] obtained a similar result for real-valued multiplicative func-
tions in 1967. To indicate the power of these results note that an application to
Möbius’ µ-function yields ∑

n≤x

µ(n) = o(x),

which is equivalent to the prime number theorem (5.6) (for the equivalence see [30],
§I.3).
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Unfortunately, the proofs of these mean value theorems are beyond the scope
of this course, we refer the interested reader to the original papers and [30], §III.4;
further mean value results can be found in [28].

A further application of characteristic functions is to find in the theory of uniform
distribution modulo 1.
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Chapter 12

Uniform distribution modulo 1

We say that a sequence of non-negative real numbers αn is uniformly distributed
modulo 1 if for any interval I ⊂ [0, 1)

d{n : αn − [αn] ∈ I} = λ(I),

where λ(I) is the Lebesgue-measure of I (i.e. the length of I). This means that
the proportion of αn, which fractional parts αn − [αn] lie in I, corresponds to the
proportion of the interval I in [0, 1).

H. Weyl’s celebrated criterion on uniform distribution [32] states

Theorem 12.1 (H. Weyl; 1916) A sequence of real numbers αn is uniformly dis-
tributed mod 1 if, and only if, for each non-zero integer m

lim
N→∞

1

N

∑
n≤N

exp(2πimαn) = 0.

Proof. Assume that the sequence {αn} is uniformly distributed mod 1, then the
corresponding distribution functions

FN(z) =
1

N

∑
n≤N

αn−[αn]≤z

1

converge weakly to the uniform distribution on [0, 1], as N → ∞, and, by Levy’s
continuity theorem, the corresponding characteristic functions converge pointwise
to the characteristic function of the uniform distribution, i.e.

ϕFN
(τ ) =

∫ 1

0
exp(iτz) dFN(z) → ϕν(τ ) =

∫ 1

0
exp(iτz) dFν(z),
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as N →∞. Setting τ = 2πm,m 6= 0, we obtain in view to Exercise 10.2 that

1

N

∑
n≤N

exp(2πimαn) =
∫ 1

0
exp(2πimz) dFN(z)

tends with N →∞ to∫ 1

0
exp(2πimz) dz =

exp(2πim)− 1

2πim
= 0.

We give only a sketch of the argument for the converse implication. For sim-
plicity, we may assume that F is absolutely continuous. With a little help from
Fourier analysis one can show that F has a representation

F(z) =
∫ 1

0
F(u) du+

∞∑
m=−∞
m6=0

cm − 1

2πim
exp(2πimz),

where

cm :=
∫ 1

0
exp(−2πimz) dF(z).

Since ∫ 1

0
exp(2πimz) dFN(z) =

1

N

∑
n≤N

exp(2πimαn)

tends with N →∞ to zero, it follows that cm = 0 for non-zero m. This gives above

F (z) =
1

2
−

∞∑
m=−∞
m6=0

exp(2πimz)

2πim
= z,

which implies the uniform distribution for {αm}. •

Exercise 12.1 (for experts in Fourier analysis) Fill the gaps in the sketch of proof
of the converse implication above.

We note a nice application to indicate the power of this criterion.

Corollary 12.2 (Kronecker’s approximation theorem; 1884) The sequence
{nξ} is uniformly distributed mod 1 if and only if ξ is irrational.

Proof. Let ξ be irrational. By the formula for the geometric series, we have, for
any non-zero integer m,

lim
N→∞

1

N

∑
n≤N

exp(2πimnξ) = lim
N→∞

1

N

exp(2πimξ)− exp(2πim(N + 1)ξ)

1− exp(2πimξ)
= 0.
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Otherwise, if ξ = a
b
, then the limit is non-zero for multiples m of b. Thus, Weyl’s

criterion yields the assertion of the corollary. •

Moreover, we say that the sequence {αn} lies dense mod 1 if for any ε > 0, and
any α ∈ [0, 1), exists an αn such that

|α − (αn − [αn])| < ε.

Obviously, a sequence which is uniformly distributed mod 1 lies also dense mod 1.
However, the converse implication is not true in general.

Exercise 12.2 Show that the sequence {logn}

(i) lies dense mod 1;
(Hint: consider the subsequence {log(2k)}.)

(ii) is not uniformly distributed mod 1.
(Hint: replace the sum in Theorem 12.1 by the corresponding integral.)

An interesting open problem is whether the sequence {exp(n)} is uniformly dis-
tributed or not. A further application of uniform distribution modulo 1 is numerical
integration. The interested reader can find more details on this and allied topics in
[15].
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Chapter 13

The theorem of Erdös-Kac

Now we are going to prove the explicit form (1.5) of the limit distribution of the
prime divisor counting functions ω(n) and Ω(n). The easiest and first proof due
to Erdös and Kac [7] is elementary but tricky and quite delicate. We will give a
proof more or less following the one of Rényi and Turán [24], including a certain
modification due to Selberg [29], which enables one to obtain further knowledge
concerning the speed of convergence to the normal distribution. Moreover, this
method applies to other problems as well. For some interesting historical comments
see [6], §12, pp.18.

Let z be a non-zero complex constant of modulus ≤ 1. We shall prove in Chapter
15 by analytic methods the asymptotic formula∑

n≤x

zω(n) = λ(z)x(log x)z−1 +O
(
x(log x)Rez−2

)
,(13.1)

where λ(z) is an entire function with λ(1) = 1. This implies

Theorem 13.1 (Erdös+Kac, 1939; Rényi+Turán, 1957) As N →∞,

νN

{
n :

ω(n)− log logN
√

log logN
≤ x

}
= Φ(x) +O

(
(log logN)−

1
2

)
.

Proof. We consider

FN(x) = νN

{
n :

ω(n)− log logN
√

log logN
≤ x

}
,

and denote by ϕFN
(τ ) its characteristic function, i.e.

ϕFN
(τ ) =

∫ ∞
∞

exp(iτz) dFN(z) =
1

N

∑
n≤N

exp

(
iτ (ω(n)− log logN
√

log logN

)
.
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By (13.1), we have, uniformly for N ≥ 2, t ∈ R,

1

N

∑
n≤N

exp(itω(n)) = λ(exp(it))(logN)exp(it)−1 +O((logN)cos t−2).

Putting T :=
√

log logN , and t := τ
T
, then the latter formual implies for |τ | ≤ T

ϕFN
(τ ) =

1

N

∑
n≤N

exp

(
iτ (ω(n)− T 2)

T

)

= λ(exp(it)) exp((exp(it)− 1)T 2 − iτT ) +O
(
exp(T 2(cos t− 2))

)
.(13.2)

Since cos t− 1 ≤ −2( t
π
)2 for |t| ≤ 1, we deduce

ϕFN
(τ )� exp

(
−

2τ 2

π2

)
;(13.3)

we shall use this estimate later for large values of τ . Since, for |t| ≤ 1,

exp(it)− 1 = it−
t2

2
+O(|t|3),

and since λ(z) is an entire function with λ(1) = 1, we have

λ(exp(it)) =
∞∑
k=0

λ(k)(1)

k!
(exp(it)− 1)k = 1 +O(|t|)

for |t| ≤ 1. Therefore, we obtain in view to (13.2), for |τ | < T
1
3 ,

ϕFN
(τ ) = exp

(
−
τ 2

2

)(
1 +O

(
|τ |+ |τ |3

T

))
+O

(
1

logN

)
;(13.4)

we shall use this formula later for 1
logN

≤ |τ | < T
1
3 . Sending N →∞, we deduce in

view to Lemma 10.2 that

ϕFN
(τ )→ exp

(
−
τ 2

2

)
= ϕΦ(τ ),

i.e. the characteristic functions ϕFN
converge pointwise to the characteristic function

of the normal distribution Φ(x). Applying Levy’s continuity theorem, we get

lim
N→∞

νN

{
n :

ω(n) − log logN
√

log logN
≤ x

}
= Φ(x);
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this is exactly Erdös’ and Kac’s formula (1.5).
In order to obtain the quantitive result of the theorem we need a further estimate

of ϕFN
(τ ) for small values of τ . When |τ | ≤ 1

logN
, then the trivial estimate exp(iy) =

1 +O(y), y ∈ R, yields in combination with the Cauchy-Schwarz inequality

ϕFN
(τ ) = 1 +O

 |τ |
TN

∑
n≤N

|ω(n)− log logN |


= 1 +O

 |τ |
TN

N ∑
n≤N

|ω(n)− log logN |2
 1

2

 ,
which leads in view to the Hardy-Ramanujan Theorem 7.2 to

ϕFN
(τ ) = 1 +O(|τ |).(13.5)

Now we apply the Berry-Esseen inequality Theorem 10.4. In view to Lemma 10.2
we get

‖FN −Φ‖∞ �
‖Φ′‖∞
T

+
∫ T

−T

∣∣∣∣∣ϕFN
(τ )− ϕΦ(τ )

τ

∣∣∣∣∣ dτ

�
1

T
+
∫ T

−T

∣∣∣∣∣ϕFN
(τ )− exp

(
−
τ 2

2

)∣∣∣∣∣ dτ

|τ |
.

We split the appearing integral into three parts, and estimate in view to (13.5),
(13.4) and (13.3)∫ 1

logN

− 1
logN

�
∫ 1

logN

− 1
logN

dτ �
1

logN
,

∫ ±T 1
3

± 1
logN

�
∫ ∞
−∞

(
1 + τ 2

T

)
exp

(
−
τ 2

2

)
dτ +

1

logN

∫ T
1
3

1
logN

dτ

τ
�

1

T
,

∫ ±∞
±T

1
3

�
∫ ∞
T

1
3

exp

(
−

2τ 2

π2

)
dτ

τ
�

1

T
.

This proves the theorem. •

It can be shown that the error term in Theorem 13.1 is best possible. This
follows by studying the frequencies of positive integers n with ν(n) = k, k ∈ N; for
details we refer to [30], §III.4.
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Exercise 13.1 Deduce from the asymptotic formula∑
n≤x

zΩ(n) = µ(z)x(log x)z−1 +O
(
x(log x)Rez−2

)
,(13.6)

where µ(z) is an entire function with µ(1) = 1, the limit law

νN

{
n :

Ω(n) − log logN
√

log logN
≤ x

}
= Φ(x) +O

(
(log logN)−

1
2

)
,

as N →∞.

It remains to show formula (13.1). The first step towards a proof was done by
(9.7) in Chapter 9. In Chapter 15 we will calculate the appearing integral by moving
the path of integration to the left of the line σ = 1. Therefore, we need an analytic
continuation of L(s, z, ω).

However, it suffices to find a zero-free region for the Riemann zeta-function.
The Euler product representation (2.7) implies immediately the non-vanishing of
ζ(s) in the half plane of absolute convergence σ > 1. As we shall see in the following
chapter one can extend this zero-free region to the left.

We observe that the Euler product representation (9.2) of L(s, z, ω) is similar
to (9.1). Define G(s, z) = L(s, z, ω)ζ(s)−z, then, for σ > 1,

G(s, z) =
∏
p

(
1 +

z

ps − 1

)(
1−

1

ps

)z
=
∞∑
n=1

bz(n)

ns
,(13.7)

where bz = zω ∗ τ−z is multiplicative with

bz(1) = 1 , bz(p
k) = (−1)k

(
z

k

)
+ z

k−1∑
j=0

(−1)j
(
z

j

)
.

Since bz(p) = 0, we have, for σ > 1
2
,

logG(s, z) =
∑
p

log

(
1 +

∞∑
k=2

bz(pk)

pks

)
�
∑
p

1

p2σ
� 1.(13.8)

This shows that
L(s, z, ω) = G(s, z)ζ(s)z

is analytically continuable to any zero-free region of ζ(s) covering the half plane of
absolute convergence σ > 1.
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Chapter 14

A zero-free region for ζ(s)

To establish a zero-free region for the Riemann zeta-function to the left of the half
plane of absolute convergence of its series expansion is a rather delicate problem. In
view to (9.4) (Exercise 2.4, resp.) we have, for σ > 0,

ζ(s) =
∑
n≤N

1

ns
+
N1−s

s− 1
+ s

∫ ∞
N

[x]− x

xs+1
dx(14.1)

=
∑
n≤N

1

ns
+
N1−s

s− 1
+O

(
N−σ

(
1 +
|s|

σ

))
.(14.2)

This gives an analytic continuation of ζ(s) to the half plane σ > 0 except for a
simple pole at s = 1.

Lemma 14.1 For |t| ≥ 1, 1− 1
2
(log(|t|+ 1))−1 ≤ σ ≤ 2,

ζ(s)� log(|t|+ 1) , and ζ ′(s)� (log(|t|+ 1))2.

Proof. Since ns = ns, it follows that

ζ(s) =
∞∑
n=1

1

ns
=
∞∑
n=1

1

ns
= ζ(s)

for σ > 1, and by analytic contiunation elsewhere. Therefore, it suffices to consider
only t > 1. Let 1− (log(t+ 1))−1 ≤ σ ≤ 3, then formula (14.2) implies

ζ(s)�
∑

n≤t+1

1

n
+

(t+ 1)1−σ

σ
� log(t+ 1).
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The estimate for ζ ′(s) follows immediately from Cauchy’s formula

ζ ′(s) =
1

2πi

∮
ζ(z)

(z − s)2
dz,

and standard estimates of integrals. •

For σ > 1,

|ζ(σ + it)| = exp

(∑
p

∞∑
k=1

1

kpkσ
cos(kt log p)

)
.

Since

17 + 24 cos α+ 8cos(2α) = (3 + 4 cosα)2 ≥ 0,(14.3)

it follows that

ζ(σ)17|ζ(σ + it)|24|ζ(σ + 2it)|8 ≥ 1.(14.4)

Therefore

Lemma 14.2 ζ(1 + it) 6= 0 for t ∈ R.

Proof. For small σ > 1, ζ(σ)� 1
σ−1

by (14.1). Assuming that ζ(1 + it) has a zero
for t = t0 6= 0, then it would follow that

|ζ(σ + it0)| ≤ ζ(σ)� σ − 1.

This leads to
lim
σ→1+

ζ(σ)17|ζ(σ + it0)|
24 = 0,

contradicting (14.4). •

It can be shown that this non-vanishing of ζ(1 + it) is equivalent to the prime
number theorem (5.6) (see [22], §2.3.

A simple refinement of the argument in the proof of Lemma 14.2 allows a lower
estimate of ζ(1 + it): for |t| ≥ 1 and 1 < σ < 2, we deduce from (14.4) and Lemma
14.1

1

|ζ(σ + it)|
≤ ζ(σ)

17
24 |ζ(σ + 2it)|

1
3 � (σ − 1)−

17
24 (log(|t|+ 1))

1
3 .

Furthermore, with Lemma 14.1,

ζ(1 + it)− ζ(σ + it) = −
∫ σ

1
ζ ′(u+ it) du� |σ − 1|(log(|t|+ 1))2.(14.5)
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Hence

|ζ(1 + it)| ≥ |ζ(σ + it)| − c1(σ − 1)(log(|t|+ 1))2

≥ c2(σ − 1)
17
24 (log(|t|+ 1))−

1
3 − c1(σ − 1)(log(|t|+ 1))2,

where c1, c2 are certain positive constants. Chosing a constant B > 0 such that
A := c2B

17
24 − c1B > 0 and putting σ = 1 +B(log(|t|+ 1)−8, we obtain now

|ζ(1 + it)| ≥
A

(log(|t|+ 1))6
.(14.6)

This gives even an estimate on the left of the line σ = 1.

Lemma 14.3 There exists a positive constant δ such that

ζ(s) 6= 0 for σ ≥ 1− δmin{1, (log(|t|+ 1))−8};

further, under the assumption |s− 1| ≥ 1, the estimates

ζ ′

ζ
(s)� (log(|t|+ 1))8 , log ζ(s)� log(2 log(|t|+ 1))

hold.

Here we choose that branch of logarithm log ζ(s) which is real on the real axis; the
other values are defined by analytic continuation in a standard way.

Proof. In view to Lemma 14.1 the estimate (14.5) holds for 1− δ(log(|t|+ 1))−8 ≤
σ ≤ 1. Using (14.6), it follows that

|ζ(σ + it)| ≥
A− c1δ

(log(|t|+ 1))6
,

where the right hand side is positve for sufficiently small δ. This yields the zero-free
region of Lemma 14.3; the estimate of the logarithmic derivative follows from the
estimate above by use of Lemma 14.1. Finally, to obtain the bound for log ζ(s) let
s0 = 1 + η + it with some positive parameter η. Then

log

(
ζ(s)

ζ(s0)

)
=
∫ s

s0

ζ ′

ζ
(u) du� |s− s0|(log(|t|+ 1))8.

Using (14.1),

| log ζ(s0)| ≤ log ζ(1 + η) = log

(
1

η

)
+O(1).
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Setting η = c(log(|t|+ 1))−8, we obtain

log ζ(s)� log

(
1

η

)
+ |σ − 1− η|(log(|t|+ 1))8 � log(2 log(|t|+ 1)).

The lemma is shown. •

Exercise 14.1 Show that (14.3) gives the best possible estimates (by the method
above).

The famous and yet unproved Riemann hypothesis states that all complex
zeros of ζ(s) lie on the so-called critical line σ = 1

2
, or equivalently, the non-

vanishing of ζ(s) in the half plane σ > 1
2
. It seems that this hypothetical distribution

of zeros is connected with the functional equation

π−
s
2 Γ
(
s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),(14.7)

which implies a symmetry of the zeros of ζ(s) with repsect to the critical line; for a
proof of (14.7) see [30], §II.3.

In fact, the first zero on the critical line (i.e. the one with minimal imaginary
part in the upper half plane) is

1

2
+ i 14.13472 . . . .

Nevertheless, we show

Lemma 14.4 ζ(s) 6= 0 for |s− 1| < 1.

Proof. Integration by parts in (14.1) (resp. Euler’s summation formula) yields

ζ(s) =
1

s− 1
+

1

2
+

s

12
−
s(s+ 1)

2

∫ ∞
1

B2(u− [u])

us+2
du,

where

B2(u) = u2 − u+
1

6

is the second Bernoulli polynomial; note that |B2(u − [u])| ≤ 1
6
. Suppose that

% = β + iγ is a zero of ζ(s) with |s− 1| ≤ 1. By symmetry, we may assume in view
to the functional equation (14.7) that β ≥ 1

2
. Setting s = % in the formula above, an

application of the mean-value theorem yields the existence of some θ with |θ| ≤ 1
such that

0 =
1

%− 1
+

1

2
+

%

12
−
θ%(% + 1)

12

∫ ∞
1

du

uβ+2
du.
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Multiplying this with 1− %, we may rewrite this as

1 =
1− %

2

(
1 +

%

6
−
θ%(% + 1)

6

∫ ∞
1

du

u
5
2

du

)
.(14.8)

The modulus of the right hand side is

1

2

(
1 +
|%|

6
+
|%(%+ 1)|

9

)
<

1

2

(
1 +

1

3
+

2

3

)
= 1,

which gives a contradiction to (14.8). This proves the lemma. •

In order to prove formula (13.1) we state some consequences we will use later
on. By Lemma 14.4, the function

1

s
((s− 1)ζ(s))z

is analytic in |s− 1| < 1, and hence, has there a power series expansion

1

s
((s− 1)ζ(s))z =

∞∑
j=0

γj(z)

j!
(s− 1)j ,(14.9)

where, by Cauchy’s formula,

γj(z) =
j!

2πi

∮
|s−1|=r

1

s
((s− 1)ζ(s))z

ds

(s− 1)j+1
.(14.10)

Note that the γj(z) are entire functions in z, satisfying the estimate

γj(z)

j!
� (1 + ε)j,

where the implicit constant depends only on z and ε ∈ (0, 1).

Exercise 14.2 Show that γ0(z) = 1,

γj(1) = (−1)j
∫ ∞

1

(u− [u])(log u)j−1

u2
du,

and, in particular, γ1(1) = γ − 1, where γ is the Euler-Masceroni constant.
(Hint: see Exercise 5.1.)

For more details on the fascinating topic of the location of zeros of the Riemann
zeta-function and its implications to number theory see [22], §2.4+2.5, as well as
the monography [23].
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Chapter 15

The Selberg-Delange method

Our aim is to prove the asymptotic formula (13.1); the proof of (13.6) is left to
the reader. The proof bases on the Selberg-Delange method which works for
more general Dirichlet series than (9.2) and (9.3) which we have to consider.
This powerful method was developped by Selberg [29]; later it was generalized by
Delange [3].

Theorem 15.1 There exist constants c1, c2 > 0 such that, uniformly for sufficiently
large x,N ≥ 0, 0 < |z| ≤ 1,

∑
n≤x

zω(n) = x(log x)z−1

 N∑
k=0

λk(z)

(log x)k
+O

exp(−c1

√
log x) +

(
c2N + 1

log x

)N+1


with

λk(z) :=
1

Γ(z − k)

∑
h+j=k

γj(z)

h!j!

[
dh

dsh
L(s, z, ω)ζ(s)−z

]
s=1

,

where γj(z) is defined in (14.10).

Before we are able to start with the proof of Theorem 15.1 we quote a classical
integral representation for the Gamma-function, which is for Re z > 0 defined by

Γ(z) =
∫ ∞

0
uz−1 exp(−u) du,

and by analytic continuation elsewhere except for simple poles at z = 0,−1,−2, . . .;
for this and other properties of the Gamma-function, which we need later on, see
[21].
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Lemma 15.2 (Hankel’s formula) Denote by H the path formed by the circle
|s| = r > 0, excluding the point s = −r, together with two copies of the half line
(−∞,−r] with respective arguments ±π. Then, for any complex z,

1

Γ(z)
=

1

2πi

∫
H
s−z exp(s) ds.(15.1)

If H(x) denotes the part of H which is located in the half plane σ > −x, then
uniformly for x > 1

1

2πi

∫
H(§)

s−z exp(s) ds =
1

Γ(z)
+O

(
(2e)π|z|Γ(1 + |z|) exp

(
−
x

2

))
.

Proof. Obviously, the integral appearing in (15.1) is absolutely and uniformly
convergent for all z. Hence, it defines an entire function of z, which, by the calculus
of residues, does not dependent on r. When Re z < −1, the integral over the circle
part |s| = r of H tends with r to zero, and the the integral over the remaining path
tends to

1

2πi

∫ ∞
0

(exp(iπz)− exp(−iπz))σ−z exp(−σ) dσ

=
sinπz

π

∫ ∞
0

σ−z exp(−σ) dσ =
sinπz

π
Γ(1− z) =

1

Γ(z)
;

here we used the well-known identity Γ(z)Γ(1 − z) = π
sinπz

. This proves the first
formula for Re z < 1, and for arbitrary z by analytic continuation.

Now we consider the integral over the truncated contour H(x). Writing s =
% exp(±iπ), we have

|s−z exp(s)| ≤ (exp(π)σ)|z| exp(−σ).

Thus,{∫
H
−
∫
H(§)

}
s−z exp(s) ds � exp(π|z|)

∫ ∞
x

%|z| exp(−%) d%

≤ exp
(
π|z| −

x

2

) ∫ x

0
%|z| exp

(
−
%

2

)
d%.

Changing the variable % = 2t yields the estimate of the lemma. •

Now we are able to give the

Proof of Theorem 15.1. In view to our observations on the function G(s, z),
defined by (13.7), in Chapter 13, it came out that L(s, z, ω) = G(s, z)ζ(s)z can be
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analytically continued to any zero-free region of ζ(s) covering the half plane σ > 1.
Hence Lemma 14.3 implies that L(s, z, ω) is analytic in the region

σ ≥ 1− δmin{1, (log(|t|+ 1))−8},(15.2)

where δ is some small positive constant. Furthermore, using (13.8), L(s, z, ω) satis-
fies there the estimate

L(s, z, ω) = G(s, z) exp(z log ζ(s))� (|t|+ 1)ε.

Hence, setting c := 1 + 1
log x

, we find∫ c±i∞

c±iT
L(s, z, ω)

xs+1

s(s+ 1)
ds� x1+c

∫ ∞
T

tε−2 dt� x2T ε−1.

Therefore, we can deduce from (9.7)∫ x

0

∑
n≤u

zω(n) du =
1

2πi

∫ c+iT

c−iT
L(s, z, ω)

xs+1

s(s+ 1)
ds+O

(
x2T ε−1

)
.(15.3)

Now denote by C the path (symmetrical with respect to the real axis) consisting
of the truncated Hankel contour H(r) surrounding the point s = 1 with radius
r = 1

2
(log x)−1, linear parts joining 1− r to 1− 1

2
δ, the arcs A±

σ = σ(t) := 1−
δ

2
min{1, (log(|t|+ 1))−8},

and the linear segments [σ(T ) ± iT, c ± iT ]. Here, let x be sufficiently large such
that C is contained in the region (15.2). Applying Cauchy’s theorem, we obtain∫ c+iT

c−iT
L(s, z, ω)

xs+1

s(s+ 1)
ds =

∫
C
L(s, z, ω)

xs+1

s(s+ 1)
ds,

since the integrand is analytic in (15.2). Obviously,∫ κ±iT

σ(T )±iT
L(s, z, ω)

xs+1

s(s+ 1)
ds � x2T ε−2,

∫
A±

L(s, z, ω)
xs+1

s(s+ 1)
ds � x1+σ(T )

∫ T

0
(1 + t)ε−2 dt� x1+σ(T ).

Putting T = exp
(√

δ
2−2ε

log x
)

for sufficiently large x, it follows from (15.3) that∫ x

0

∑
n≤u

zω(n) du =
1

2πi

∫
H(r)

L(s, z, ω)
xs+1

s(s+ 1)
ds(15.4)

+O
(
x2 exp

(
−c
√

log x
))

,
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where c =
√

(1− ε)δ. Obviously, the integral

`(x) :=
1

2πi

∫
H(r)

L(s, z, ω)
xs+1

s(s+ 1)
ds,

appearing in (15.4), is an infinitely differentiable function of x > 0, and, in particular,
we have

`′(x) :=
1

2πi

∫
H(r)

L(s, z, ω)
xs

s
ds , `′′(x) :=

1

2πi

∫
H(r)

L(s, z, ω)xs−1 ds.(15.5)

By the expansion (14.9) it follows, for s ∈ H(r), that

L(s, z)�
1

|s− 1|
=

1

r
.

Consequently, a trivial estimate gives

`′′(x)� log x.(15.6)

In view to (13.8) formula (14.9) implies, for s ∈ H(r),

G(s, z)
((s− 1)ζ(s))z

s
=
∞∑
k=0

gk(z)(s− 1)k

with

gk(z) :=
1

k!

∑
h+j=k

(
k

j

)
γj(z)

[
dh

dsh
L(s, z, ω)ζ(s)−z

]
s=1

= Γ(z − k)λk(z),

where

gk(z) =
k!

2πi

∮
G(s, u)

((s− 1)ζ(s))u

s(u− z)k+1
� δ−k,(15.7)

since the integrand is analytic in |s− 1| ≤ δ. Therefore, we have on the truncated
Hankel contour H(r)

G(s, z)
((s− 1)ζ(s))z

s
=

N∑
k=0

gk(z)(s− 1)k +O

( |s− 1|

δ

)N+1
 .

Substituting this in (15.5) gives

`′(x) =
N∑
k=0

gk(z)
1

2πi

∫
H(r)

xs(s− 1)k−z ds+O(δ−NR(x)),(15.8)
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where

R(x) :=
∫
H
|xs(s− 1)N+1−z||ds|

�
∫ 1−r

1−1
2
δ
(1− σ)N+1−Rezxσ dσ + x1+rrN+2−Rez.

Since the Gamma-function interpolates the factorials we have in view to (5.2)

Γ(n+ 1) = n! = exp(n log n− n+O(log n)

for n ∈ N. Therefore, putting u = (1− σ) log x, it follows that

R(x) � x(log x)Rez−N−2

(∫ ∞
1
2

uN+1−Rez exp(−u) du+ 2−N
)

� x(log x)Rez−N−2Γ(N + 3)� x(log x)Rez−1

(
BN + 1

log x

)N+1

;

here, and in the sequel, B denotes some positive absolute constant, not necessarily
always the same. In order to simplify formula (15.8), changing the variable by
w = (s− 1) log x, and applying Lemma 15.2, yields

1

2πi

∫
H(r)

xs(s− 1)k−z ds =
x(log x)z−1−k

2πi

∫
H( δ

2
log x)

wk−z exp(w) dw

= x(log x)z−1−k

(
1

Γ(z − k)
+O

(
(Bk + 1)kx−

δ
4

))
.

Therefore, we get for the main term in (15.8)

x(log x)z−1

(
N∑
k=0

λk(z)

(log x)k
+ EN

)
,

where

EN � x−
δ
4

N∑
k=0

|gk(z)|

(
Bk + 1

log x

)k
� x−

δ
4BN

N∑
k=0

k!

(
5

δ log x

)k

� x−
δ
4

(
B

log x

)N N∑
k=0

N !

(N − k)!

(
log x

B

)N−k

� x−
δ
4N !

(
B

log x

)N
�

(
BN + 1

log x

)N+1

;
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here we used the weak Stirling formula (5.2) and (15.7). This lengthy calculation
leads in (15.8) to

`′(x) = x(log x)z−1

 N∑
k=0

λk(z)

(log x)k
+O

(BN + 1

log x

)N+1
 .(15.9)

Now we are able to finish the proof. Applying formula (15.9) with x+ h and x,
where 0 < h < x

2
, leads to∫ x+h

x

∑
n≤u

zω(n) du = `(x+ h)− `(x) +O

(
x2 exp(−B

√
log x)

)
.

By (15.6)

`(x+ h)− `(x) = h`′(x) + h2
∫ 1

0
(1− u)`′′(x+ uh) du = h`′(x) +O(h2 log x),

which leads to∑
n≤x

zω(n) =
1

h

∫ x+h

x

∑
n≤u

zω(n) du+O

(
L

h

)

= `′(x) +O

(
x2

h
exp(−B

√
log x) + h log x+

L

h

)
,

where

L :=
∫ x+h

x

∣∣∣∣∣∣
∑
n≤x

zω(n) −
∑
n≤u

zω(n)

∣∣∣∣∣∣ du.

In view to |zω(n)| ≤ 1, we get

L ≤
∫ x+h

x

∑
x<n≤u

1du =
∫ x+h

x
(u− x) du+O(h)� h2.

Thus, choosing h := x exp(−B
√

log x), we obtain

∑
n≤x

zω(n) du = `′(x) +O

(
x2

h
exp(−B

√
log x) + h log x

)
.

Now the assertion of the theorem follows from (15.9). •

Exercise 15.1 Prove a similar result as in Theorem 15.1 for
∑
n≤x z

Ω(n).

In the last chapter we give an application of the Selberg-Delange method on
the frequency of integers n with ω(n) = k. This returns us to Gauss’ conjecture
with which we started in the introduction.
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Chapter 16

The prime number theorem

As a generalization of the prime counting function π(x) we define, for k ∈ N,

πk(x) = ]{n ≤ x : ω(n) = k}.

Note that the influence of prime powers pj ≤ x for fixed k is small. For example, if
k = 1, then

π1(x) = π(x) + ]{pj ≤ x : j ≥ 2} = π(x) +O(x
1
2 ).

Therefore, πk(x) counts asymptotically the number of integers n which are the prod-
uct of exactly k distinct prime numbers. Now we shall prove

Theorem 16.1 (Sathe, 1953/1954; Selberg, 1954) We have, uniformly for
sufficiently large x and 1 ≤ k ≤ log log x,

πk(x) =
x

log x

(log log x)k−1

(k − 1)!

(
λ

(
k − 1

log log x

)
+O

(
k

(log log x)2

))
,

where

λ(z) :=
1

Γ(z + 1)

∏
p

(
1 +

z

p− 1

)(
1−

1

p

)z
.

In particular, the asymptotic formula of the theorem yields

πk(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!
= (1 + o(1))π(x)

(log log x)k−1

(k − 1)!
.

As we mentioned in the introduction, this result was first conjectured by Gauss.
The first proof was given by Landau [20]; see also [14] where it is proved as a
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consequence of the prime number theorem by induction on k. Our proof is based
on Theorem 15.1.

Proof of Theorem 16.1. Obviously,∑
k≥0

πk(x)z
k =

∑
n≤x

zω(n).

Consequently, πk(x) equals, up to a small error, the coefficient of zk in the main
term of the asymptotic formula of Theorem 15.1. Therefore, we obtain

πk(x) =
x

log x

1

k!

dk

dzk

[
(log x)zλk(z) + (log x)zE(x)

]
z=0

,

where E(x)� (log x)−1. By Cauchy’s formula, it turns out that

dk

dzk

[
(log x)zE(x)

]
z=0

=
1

2πi

∮
|z|=r

(log x)zE(x)

zk+1
dz �

log log x

k!
E(x)

by putting r = k
log logx

. Furthermore,

dk

dzk

[
(log x)zλk(z)

]
z=0

=
1

2πi

∮
|z|=r

(log x)zλk(z)

zk+1
dz.

Recall that λk(0) = 0. Thus, using the functional equation for the Gamma-function
Γ(z + 1) = zΓ(z), we may write λk(z) = zλ(z). Then we can replace the integrand
above by

λ(z)
∞∑
j=0

1

j!
(log log x)jzj−k,

which gives, by the calculus of residues, the asymptotic formula of the theorem. •

The case k = 1 yields the celebrated prime number theorem (5.6).

Corollary 16.2 (Prime number theorem) As x→∞,

π(x) =
x

log x
+O

(
x

log x(log log x)2

)
.

The prime number theorem allows a plenty of interesting speculations in number
theory. In view to

π(x) = (1 + o(1))
x

log x
=
∫ x

2

du

log u
+ error,
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we can build up a probabilistic model for primality, in which an integer n is prime
with probability 1

logn
. This idea dates back to Cramér [2], who discussed with his

model the still open conjecture that there is always a prime number in between two
consecutive squares

n2 < p < (n+ 1)2.

We give an easier example. When a, b > 1 are integers, then

2a·b − 1 = (2a − 1) · (2a(b−1) + . . .+ 2a + 1).

But if the composite integer ab is replaced by a prime number, then the situation is
different; for example

23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191 ∈ P.

For a prime p the Mersenne number Mp is defined by

Mp = 2p − 1.

The Lucas-Lehmer algorithm,

s := 4, for i from 3 to p do s := s2 − 2 mod (2p − 1),

returns the value s = 0 if and only if Mp is prime; for a proof of this deep theorem
see [13], §XV.5. Iteration yields

s = 4 7→ 14 = 2 · 7 7→ 194 7→ 37 634 = 2 · 31 · 607,

which gives the first Mersenne primes. Not all prime p lead to prime Mp; for
example M11 = 23 · 89. Meanwhile, 39 Mersenne primes are known; recently
Cameron discovered by intensive computer calculations that

M13 466 917 = 213 466 917 − 1

is prime. This largest known prime number exceeds the number of atoms in the
universe, and has more than four million digits! It is an open question whether
there exist infinitely many Mersenne primes or not. In view to our probabilistic
model the probability that Mp is prime equals

P(Mp ∈ P) ≈
1

logMp

≈
1

p log 2
.

Therefore, the expectation value for the number of Mersenne primes is

E(]Mp ∈ P) =
∑
p

P(Mp ∈ P) ≈
1

log 2

∑
p

1

p
,

which diverges by Corollary 5.4. Thus we expect that there are infinitely many
Mersenne primes.

79



Exercise 16.1 For a non-negative integer k the kth Fermat number is defined
by Fk = 22k + 1.

(i) Calculate the first seven Fermat numbers.

(ii) Do you think that there are infinitely many or only finitely many Fermat

primes?

(The Fermat numbers are of special interest for the problem of the construction of
the regular polygon of n sides; see [13], §V.8.)

However, the probabilistic model has also limits; see [22], §3. For many problems
in number theory a deeper knowledge on the prime number distribution is needed
than that what is known yet. One can show that

π(x) =
∫ x

2

du

log u
+O(xθ+ε) ⇐⇒ ζ(s) 6= 0 in σ > θ

(for a proof see [30], §2.4). Since there are zeros of ζ(s) on the critical line σ = 1
2
,

Riemann’s hypothesis states that the prime numbers are distributed as uniformly
as possible!

It is known that ζ(s) has infinitely many zeros in the strip 0 < σ < 1. Many
computations were done to find a counter example to the Riemann hypothesis, that
is to find a zero in the half plane σ > 1

2
. However the first 1 500 000 001 zeros lie

without exception on σ = 1
2
. Further, it is known that at least 40 percent have the

predicted distribution; for more details we refer the interested reader to [23].
We conclude with a probabilistic interpretation of Riemann’s hypothesis due to

Denjoy [4]. If and only if the Riemann hypothesis is true, i.e. that ζ(s) is free of
zeros in σ > 1

2
, the reciprocal

1

ζ(s)
=
∏
p

(
1−

1

ps

)

has an analytic continuation to the half plane σ > 1
2
. This turns out to be equivalent

to the estimate∑
n≤x

µ(n)� x
1
2

+ε.(16.1)

Now assume that the values µ(n) behave like independent random variables Xn with

P(Xn = +1) = P(Xn = −1) =
1

2
.
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Then

Z0 := 0 und Zn :=
n∑
j=1

Xj

defines a random walk, and formula (3.2) yields

P

∣∣∣∣∣∣
∑
n≤x

Xn

∣∣∣∣∣∣ ≤ cn
1
2

 −→ Φ(c).

From that point of view the validity of formula (16.1), and therefore the truth of
Riemann’s hypothesis seems highly probable.

”It is evident that the primes are randomly distributed
but, unfortunately, we don’t know what ’random’ means.”

R.C. Vaughan
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