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Abstract

In this paper two things are done. (1) It is shown that a consid-
erable simplification can be attained in writing down matrix elements
for complex processes in electrodynamics. Further, a physical point
of view is available which permits them to be written down directly
for any specific problem. Being simply a restatement of conventional
electrodynamics, however, the matrix elements diverge for complex
processes. (2) Electrodynamics is modified by altering the interaction
of electrons at short distances. All matrix elements are now finite,
with the exception of those relating to problems of vacuum polariza-
tion. The latter are evaluated in a manner suggested by Pauli and
Bethe, which gives finite results for these matrices also. The only ef-
fects sensitive to the modification are changes in mass and charge of the
electrons. Such changes could not be directly observed. Phenomena
directly observable, are insensitive to the details of the modification
used (except at extreme energies). For such phenomena, a limit can
be taken as the range of the modification goes to zero. The results
then agree with those of Schwinger. A complete, unambiguous, and
presumably consistent, method is therefore available for the calculation
of all processes involving electrons and photons.
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The simplification in writing the expressions results from an em-
phasis on the over-all space-time view resulting from a study of the
solution of the equations of electrodynamics. The relation of this to
the more conventional Hamiltonian point of view is discussed. It would
be very difficult Co make the modification which is proposed if one in-
sisted on having the equations in Hamiltonian form.

The methods apply as well to charges obeying the Klein-Gordon
equation, and to the various meson theories of nuclear forces. Illus-
trative examples are given. Although a modification like that used
in electrodynamics can make all matrices finite for all of the meson
theories, for some of the theories it is no longer true that all directly
observable phenomena are insensitive to the details of the modification
used.

The actual evaluation of integrals appearing in the matrix elements
may be facilitated, in the simpler cases, by methods described in the
appendix.

This paper should be considered as a direct continuation of a preceding
one1 (I) in which the motion of electrons, neglecting interaction, was ana-
lyzed, by dealing directly with the solution of the Hamiltonian differential
equations. Here the same technique is applied to include interactions and
in that way to express in simple terms the solution of problems in quantum
electrodynamics.

For most practical calculations in quantum electrodynamics the solution
is ordinarily expressed in terms of a matrix element. The matrix is worked
out as an expansion in powers of e2/~c, the successive terms corresponding
to the inclusion of an increasing number of virtual quanta. It appears that
a considerable simplification can be achieved in writing down these matrix
elements for complex processes. Furthermore, each term in the expansion
can be written down and understood directly from a physical point of view,
similar to the space-time view in I. It is the purpose of this paper to de-
scribe how this may be done. We shall also discuss methods of handling the
divergent integrals which appear in these matrix elements.

The simplification in the formulae results mainly from the fact that pre-
vious methods unnecessarily separated into individual terms processes that
were closely related physically. For example, in the exchange of a quantum
between two electrons there were two terms depending on which electron
emitted and which absorbed the quantum. Yet, in the virtual states consid-
ered, timing relations are not significant. Only the order of operators in the
matrix must be maintained. We have seen (I), that in addition, processes in

1R. P. Feynman, Phys. Rev. 76, 749 (1949), hereafter called I.
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which virtual pairs are produced can be combined with others in which only
positive energy electrons are involved. Further, the effects of longitudinal
and transverse waves can be combined together. The separations previously
made were on an unrelativistic basis (reflected in the circumstance that ap-
parently momentum but not energy is conserved in intermediate states).
When the terms are combined and simplified, the relativistic invariance of
the result is self-evident.

We begin by discussing the solution in space and time of the Schrödinger
equation for particles interacting instantaneously. The results are immedi-
ately generalizable to delayed interactions of relativistic electrons and we
represent in that way the laws of quantum electrodynamics. We can then
see how the matrix element for any process can be written down directly.
In particular, the self-energy expression is written down.

So far, nothing has been done other than a restatement of conventional
electrodynamics in other terms. Therefore, the self-energy diverges. A mod-
ification2 in interaction between charges is next made, and it is shown that
the self-energy is made convergent and corresponds to a correction to the
electron mass. After the mass correction is made, other real processes are
finite and-insensitive to the “width” of the cut-off in the interaction.3

Unfortunately, the modification proposed is not completely satisfactory
theoretically (it leads to some difficulties of conservation of energy). It does,
however, seem consistent and satisfactory to define the matrix element for
all real processes as the limit of that computed here as the cut-off width
goes to zero. A similar technique suggested by Pauli and by Bethe can be
applied to problems of vacuum polarization (resulting in a renormalization
of charge) but again a strict physical basis for the rules of convergence is
not known.

After mass and charge renormalization, the limit of zero cut-off width
can be taken for all real processes. The results are then equivalent to those
of Schwinger4 who does not make explicit use of the convergence factors.
The method of Schwinger is to identify the terms corresponding to correc-
tions in mass and charge and, previous to their evaluation, to remove them
from the expressions for real processes. This has the advantage of showing
that the results can be strictly independent of particular cut-off methods.

2For a discussion of this modification in classical physics see R. P. Feynman, Phys.
Rev. 74 939 (1948), hereafter referred to as A.

3A brief summary of the methods and results will be found in R. P. Feynman, Phys.
Rev. 74, 1430 (1948), hereafter referred to as B.

4J. Schwinger, Phys. Rev. 74, 1439 (1948), Phys. Rev. 75, 651 (1949). A proof of
this equivalence is given by F. J. Dyson, Phys. Rev. 75, 486 (1949).
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On the other hand, many of the properties of the integrals are analyzed
using formal properties of invariant propagation functions. But one of the
properties is that the integrals are infinite and it is not clear to what extent
this invalidates the demonstrations. A practical advantage of the present
method is that ambiguities can be more easily resolved; simply by direct
calculation of the otherwise divergent integrals. Nevertheless, it is not at all
clear that the convergence factors do not upset the physical consistency of
the theory. Although in the limit the two methods agree, neither method
appears to be thoroughly satisfactory theoretically. Nevertheless, it does
appear that we now have available a complete and definite method for the
calculation of physical processes to any order in quantum electrodynamics.

Since we can write down the solution to any physical problem, we have
a complete theory which could stand by itself. It will be theoretically in-
complete, however, in two respects. First, although each term of increasing
order in e2/~c can be written down it would be desirable to see some way
of expressing things in finite form to all orders in e2/~c at once. Second,
although it will be physically evident that the results obtained are equiv-
alent to those obtained by conventional electrodynamics the mathematical
proof of this is not included. Both of these limitations will be removed in a
subsequent paper (see also Dyson5).

Briefly the genesis of this theory was this. The conventional electrody-
namics was expressed in the Lagrangian form of quantum mechanics de-
scribed in the Reviews of Modern Physics.5 The motion of the field oscilla-
tors could be integrated out (as described in Section 13 of that paper), the
result being an expression of the delayed interaction of the particles. Next
the modification of the delta-function interaction could be made directly
from the analogy to the classical case.6 This was still not complete because
the Lagrangian method had been worked out in detail only for particles
obeying the non-relativistic Schrd̈inger equation. It was then modified in
accordance with the requirements of the Dirac equation and the phenomenon
of pair creation. This was made easier by the reinterpretation of the theory
of holes (I). Finally for practical calculations the expressions were developed
in a power series in e2/~c. It was apparent that each term in the series had
a simple physical interpretation. Since the result was easier to understand
than the derivation, it was thought best to publish the results first in this

5R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). The application to electrodynamics
is described in detail by H. J. Groenewold, Koninklijke Nederlandsche Akademia van
Weteschappen. Proceedings Vol. LII, 3 (226) 1949.

6For a discussion of this modification in classical physics see R. P. Feynman, Phys.
Rev. 74 939 (1948), hereafter referred to as A.
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paper. Considerable time has been spent to make these first two papers as
complete and as physically plausible as possible without relying on the La-
grangian method, because it is not generally familiar. It is realized that such
a description cannot carry the conviction of truth which would accompany
the derivation. On the other hand, in the interest of keeping simple things
simple the derivation will appear in a separate paper.

The possible application of these methods to the various meson theories
is discussed briefly. The formulas corresponding to a charge particle of zero
spin moving in accordance with the Klein Gordon equation are also given.
In an Appendix a method is given for calculating the integrals appearing in
the matrix elements for the simpler processes.

The point of view which is taken here of the interaction of charges differs
from the more usual point of view of field theory. Furthermore, the familiar
Hamiltonian form of quantum mechanics must be compared to the over-
all space-time view used here. The first section is, therefore, devoted to a
discussion of the relations of these viewpoints.

1 COMPARISON WITH THE HAMILTONIAN
METHOD

Electrodynamics can be looked upon in two equivalent and complemen-
tary ways. One is as the description of the behavior of a field (Maxwell’s
equations). The other is as a description of a direct interaction at a dis-
tance (albeit delayed in time) between charges (the solutions of Lienard and
Wiechert). From the latter point of view light is considered as an interaction
of the charges in the source with those in the absorber. This is an imprac-
tical point of view because many kinds of sources produce the same kind
of effects. The field point of view separates these aspects into two simpler
problems, production of light, and absorption of light. On the other hand,
the field point of view is less practical when dealing with close collisions of
particles (or their action on themselves). For here the source and absorber
are not readily distinguishable, there is an intimate exchange of quanta.
The fields are so closely determined by the motions of the particles that it is
just as well not to separate the question into two problems but to consider
the process as a direct interaction. Roughly, the field point of view is most
practical for problems involving real quanta, while the interaction view is
best for the discussion of the virtual quanta involved. We shall emphasize
the interaction viewpoint in this paper, first because it is less familiar and
therefore requires more discussion, and second because the important aspect

5



in the problems with which we shall deal is the effect of virtual quanta.
The Hamiltonian method is not well adapted to represent the direct

action at a distance between charges because that action is delayed. The
Hamiltonian method represents the future as developing out of the present.
If the values of a complete set of quantities are known now, their values can
be computed at the next instant in time. If particles interact through a de-
layed interaction, however, one cannot predict the future by simply knowing
the present motion of the particles. One would also have to know what the
motions of the particles were in the past in view of the interaction this may
have on the future motions. This is done in the Hamiltonian electrodynam-
ics, of course, by requiring that one specify besides the present motion of the
particles, the values of a host of new variables (the coordinates of the field
oscillators) to keep track of that aspect of the past motions of the particles
which determines their future behavior. The use of the Hamiltonian forces
one to choose the field viewpoint rather than the interaction viewpoint.

In many problems, for example, the close collisions of particles, we are
not interested in the precise temporal sequence of events. It is not of interest
to be able to say how the situation would look at each instant of time during a
collision and how it progresses from instant to instant. Such ideas are only
useful for events taking a long time and for which we can readily obtain
information during the intervening period. For collisions it is much easier
to treat the process as a whole.7 The M∅ller interaction matrix for the
the collision of two electrons is not essentially more complicated than the
nonrelativistic Rutherford formula, yet the mathematical machinery used to
obtain the former from quantum electrodynamics is vastly more complicated
than Schrödinger’s equation with the e2/r12 interaction needed to obtain the
latter. The difference is only that in the latter the action is instantaneous
so that the Hamiltonian method requires no extra variables, while in the
former relativistic case it is delayed and the Hamiltonian method is very
cumbersome.

We shall be discussing the solutions of equations rather than the time
differential equations from which they come. We shall discover that the so-
lutions, because of the over-all space-time view that they permit, are as easy
to understand when interactions are delayed as when they are instantaneous.

As a further point, relativistic invariance will be self-evident. The Hamil-
tonian form of the equations develops the future from the instantaneous
present. But for different observers in relative motion the instantaneous
present is different, and corresponds to a different 3-dimensional cut of space-

7This is the viewpoint of the theory of the S matrix of Heisenberg.

6



time. Thus the temporal analyses of different observers is different and their
Hamiltonian equations are developing the process in different ways. These
differences are irrelevant, however, for the solution is the same in any space
time frame. By forsaking the Hamiltonian method, the wedding of relativity
and quantum mechanics can be accomplished most naturally.

We illustrate these points in. the next section by studying the solution
of Schrödinger’s equation for non-relativistic particles interacting by an in-
stantaneous Coulomb potential (Eq. 2). When the solution is modified to
include the effects of delay in the interaction and the relativistic properties
of the electrons we obtain an expression of the laws of quantum electrody-
namics (Eq. 4).

2 THE INTERACTION BETWEEN CHARGES

We study by the same methods as in I, the interaction of two particles
using the same notation as I. We start by considering the non-relativistic
case described by the Schrd̈inger equation (I, Eq. 1). The wave function at
a given time is a function ψ(xa,xb, t) of the coordinates xa and xb of each
particle. Thus call K(xa,xb, t; x

′
a,x
′
b, t
′) the amplitude that particle a at

x′a at time t′ will get to xa at t while particle b at x′b at t′ gets to xb at t.
If the particles are free and do not interact this is

K(xa,xb, t; x
′
a,x
′
b, t
′) = K0a(xa, t; x

′
a, t
′)K0b(xb, t; x

′
b, t
′)

where K0a is the K0 function for particle a considered as free. In this case
we can obviously define a quantity like K, but for which the time t need not
be the same for particles a and b (likewise for t′); e.g.,

K0(3, 4; 1, 2) = K0a(3, 1)K0b(4, 2) (1)

can be thought of as the amplitude that particle a goes from x1 at t1 to x3

at t3 and that particle b goes from x2 at t2 to x4 at t4.
When the particles do interact, one can only define the quantity

K(3, 4; 1, 2) precisely if the interaction vanishes between t1 and t2 and also
between t3 and t4. In a real physical system such is not the case. There is
such an enormous advantage, however, to the concept that we shall continue
to use it, imagining that we can neglect the effect of interactions between t1
and t2 and between t3 and t4. For practical problems this means choosing
such long time intervals t3 − t1 and t4 − t2 that the extra interactions near
the end points have small relative effects. As an example, in a scattering
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problem it may well be that the particles are so well separated initially and
finally that the interaction at these times is negligible. Again energy values
can be defined by the average rate of change of phase over such long time
intervals that errors initially and finally can be neglected. Inasmuch as any
physical problem can be defined in terms of scattering processes we do not
lose much in a general theoretical sense by this approximation. If it is not

Figure 1: The fundamental interaction Eq. (4). Exchange of one quantum
between two electrons.

made it is not easy to study interacting particles relativistically, for there is
nothing significant in choosing t1 = t3 if x1 6= x3 as absolute simultaneity of
events at a distance cannot be defined invariantly. It is essentially to avoid
this approximation that the complicated structure of the older quantum
electrodynamics has been built up. We wish to describe electrodynamics as
a delayed interaction between particles. If we can make the approximation
of assuming a meaning to K(3, 4; 1, 2) the results of this interaction can be
expressed very simply.

To see how this may be done, imagine first that the interaction is simply
that given by a Coulomb potential e2/r where r is the distance between the
particles. If this be turned on only for a very short time ∆t0 at time t0 the
first order correction to K(3, 4; 1, 2) can be worked out exactly as was Eq.
(9) of I by an obvious generalization to two particles:

K(1)(3, 4; 1, 2) = −ie2
∫ ∫

K0a(3, 5)K0b(4, 6)r−1
56

×K0a(5, 1)K0b(6, 2)d3x5d
3x6∆t0,
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where t5 = t6 = t0. If now the potential were on at all times (so that strictly
K is not defined unless t4 = t3 and t1 = t2), the first-order effect is obtained
by integrating on t0, which we can write as an integral over both t5 and t6
if we include a delta-function δ(t5 − t6) to insure contribution only when
t5 = t6 Hence, the first-order effect of interaction is (calling t5 − t6 = t56):

K(1)(3, 4; 1, 2) = −ie2
∫ ∫

K0a(3, 5)K0b(4, 6)r−1
56

×δ(t56)K0a(5, 1)K0b(6, 2)dτ5dτ6,

(2)

where dτ = d3xdt.
We know, however, in classical electrodynamics, that the Coulomb po-

tential does not act instantaneously, but is delayed by a time r56, taking the
speed of light as unity. This suggests simply replacing r−1

56 δ(t56) in (2) by
something like r−1

56 δ(t56 − r56) to represent the delay in the effect of b on a.
This turns out to be not quite right,8 for when this interaction is repre-

sented by photons they must be of only positive energy, while the Fourier
transform of δ(t56−r56) contains frequencies of both signs. It should instead
be replaced by δ+(t56 − r56) where

δ+(x) =

∞∫
0

e−iωxdω/π = lim
ε→0

(πi)−1

x− iε = δ(x) + (πix)−1. (3)

This is to be averaged with r−1
56 δ+(−t56− r56) which arises when t5 < t6

and corresponds to a emitting the quantum which b receives. Since

(2r)−1(δ+(t− r) + δ+(−t− r)) = δ+(t2 − r2),

this means r−1
56 δ(t56) is replaced by δ+(s2

56) where s2
56 = t256−r2

56 is the square
of the relativistically invariant interval between points 5 and 6. Since in clas-
sical electrodynamics there is also an interaction through the vector poten-
tial, the complete interaction (see A, Eq. (I)) should be (1 − (v5 · v6)δ+(s2

56),
or in the relativistic case,

(1− αa · αb)δ+(s2
56) = βaβbγaµγbµδ+(s2

56).

8It and a like term for the effect of a on b, leads to a theory which, in the classical limit,
exhibits interaction through half-advanced and half-retarded potentials. Classically, this
is equivalent to purely retarded effects within a closed box from which no light escapes
(e.g., see A, or J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945)).
Analogous theorems exist in quantum mechanics but it would lead us too far astray to
discuss them now.
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Hence we have for electrons obeying the Dirac equation,

K(1)(3, 4; 1, 2) = ie2
∫ ∫

K+a(3, 5)K+b(4, 6)γaµγbµ

×δ+(s2
56)K+a(5, 1)K+b(6, 2)dτ5dτ6,

(4)

where γaµ and γbµ, are the Dirac matrices applying to the spinor correspond-
ing to particles a and b, respectively (the factor βaβb being absorbed in the
definition, I Eq. (17), of K+).

This is our fundamental equation for electrodynamics. It describes the
effect of exchange of one quantum (therefore first order in e2) between two
electrons. It will serve as a prototype enabling us to write down the corre-
sponding quantities involving the exchange of two or more quanta between
two electrons or the interaction of an electron with itself. It is a consequence
of conventional electrodynamics. Relativistic invariance is clear. Since one
sums over µ it contains the effects of both longitudinal and transverse waves
in a relativistically symmetrical way.

We shall now interpret Eq. (4) in a manner which will permit us to
write down the higher order terms. It can be understood (see Fig. 1) as
saying that the amplitude for “a” to go from 1 to 3 and “b” to go from 2 to
4 is altered to first order because they can exchange a quantum. Thus, “a”
can go to 5 (amplitude (K+(5, 1)) emit a quantum (longitudinal, transverse,
or scalar γaµ) and then proceed to 3 (K+(3, 5)). Meantime “b” goes to 6
(K+(6, 2)), absorbs the quantum (γbµ) and proceeds to 4 (K+(4, 6)). The
quantum meanwhile proceeds from 5 to 6, which it does with amplitude
δ+(s2

56). We must sum over all the possible quantum polarizations it and
positions and times of emission 5, and of absorption 6. Actually if t5 > t6
it would be better to say that “a” absorbs and “b” emits but no attention
need be paid to these matters, as all such alternatives are automatically
contained in (4).

The correct terms of higher order in e2 or involving larger numbers of
electrons (interacting with themselves or in pairs) can be written down by
the same kind of reasoning. They will be illustrated by examples as we
proceed. In a succeeding paper they will all be deduced from conventional
quantum electrodynamics.

Calculation, from (4), of the transition element between positive energy
free electron states gives the M∅ller scattering of two electrons, when ac-
count is taken of the Pauli principle.

The exclusion principle for interacting charges is handled in exactly the
same way as for noninteracting charges (I). For example, for two charges
it requires only that one calculate K(3, 4; 1, 2)−K(4, 3; 1, 2) to get the net
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amplitude for arrival of charges at 3 and 4. It is disregarded in intermedi-
ate states. The interference effects for scattering of electrons by positrons
discussed by Bhabha will be seen to result directly in this formulation. The
formulas are interpreted to apply to positrons in the manner discussed in I.

As our primary concern will be for processes in which the quanta are
virtual we shall not include here the detailed analysis of processes involving
real quanta in initial or final state, and shall content ourselves by only stating
the rules applying to them.9 The result of the analysis is, as expected, that
they can be included by the same line of reasoning as is used in discussing
the virtual processes, provided the quantities are normalized in the usual
manner to represent single quanta. For example, the amplitude that an
electron in going from 1 to 2 absorbs a quantum whose vector potential,
suitably normalized, is cµexp(−ik · x) = Cµ(x) is just the expression (I,
Eq. (13)) for scattering in a potential with A (3) replaced by C (3). Each
quantum interacts only once (either in emission or in absorption), terms like
(I, Eq. (14)) occur only when there is more than one quantum involved. The
Bose statistics of the quanta can, in all cases, be disregarded in intermediate
states. The only effect of the statistics is to change the weight of initial or
final states. If there are among quanta, in the initial state, some a which are
identical then the weight of the state is (1/n!) of what it would be if these
quanta were considered as different (similarly for the final state).

3 THE SELF–ENERGY PROBLEM

Having a term representing the mutual interaction of a pair of charges, we
must include similar terms to represent the interaction of a charge with itself.
For under some circumstances what appears to be two distinct electrons

9Although in the expressions stemming from (4) the quanta are virtual, this is not
actually a theoretical limitation. One way to deduce the correct rules for real quanta from
(4) is to note that in a closed system all quanta can be considered as virtual (i.e., they
have a known source and are eventually absorbed) so that in such a system the present
description is complete and equivalent to the conventional one. In particular, the relation
of the Einstein A and B coefficients can be deduced. A more practical direct deduction
of the expressions for real quanta will be given in the subsequent paper. It might be
noted that (4) can be rewritten as describing the action on a, K(1)(3, 1) = i

∫
K+(3, 5)×

A(5)K+(5, 1)dτ5 of the potential Aµ(5) = e2
∫
K+(4, 6)δ+(s2

56)γµ × K+(6, 2)dτ6 arising
from Maxwell’s equations −�2Aµ = 4πjµ from a “current” jµ(6) = e2K+(4, 6)γµK+(6, 2)
produced by particle b in going from 2 to 4. This is virtue of the fact that δ+ satisfies

−�2
2δ+(s2

21) = 4πδ(2, 1). (5)
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may, according to I, be viewed also as a single electron (namely in case
one electron was created in a pair with a positron destined to annihilate
the other electron). Thus to the interaction between such electrons must
correspond the possibility of the action of an electron on itself.10

This interaction is the heart of the self energy problem. Consider to
first order in e2 the action of an electron on itself in an otherwise force free
region. The amplitude K(2, 1) for a single particle to get from 1 to 2 differs
from K+(2, 1) to first order in e2 by a term

K(1)(2, 1) = −ie2
∫ ∫

K+(2, 4)γµK+(4, 3)γµ

×K+(3, 1)dτ3dτ4δ+(s2
43).

(6)

It arises because the electron instead of going from 1 directly to 2, may go
(Fig. 2) first to 3, (K+(3, 1)), emit a quantum (γµ), proceed to 4, (K+(4, 3)),
absorb it (γµ), and finally arrive at 2 (K+(2, 4)). The quantum must go from
3 to 4 (δ+(s2

43)).
This is related to the self-energy of a free electron in the following man-

ner. Suppose initially, time t1, we have an electron in state f(1) which we
imagine to be a positive energy solution of Dirac’s equation for a free parti-
cle. After a long time t2 − t1 the perturbation will alter the wave function,
which can then be looked upon as a superposition of free particle solutions
(actually it only contains f). The amplitude that g(2) is contained is calcu-
lated as in (I, Eq. (21)). The diagonal element (g = f) is therefore∫ ∫

f̃(2)βK(1)(2, 1)βf(1)d3x1d
3x2. (7)

The time interval T = t2 − t1 (and the spatial volume V over which
one integrates) must be taken very large, for the expressions are only ap-
proximate (analogous to the situation for two interacting charges).11 This
is because, for example, we are dealing incorrectly with quanta emitted just
before t2 which would normally be reabsorbed at times after t2.

If K(1)(2, 1) from (6) is actually substituted into (7) the surface integrals
can be performed as was done in obtaining I, Eq. (22) resulting in

−ie2

∫ ∫
f̃(4)γµK+(4, 3)γµf(3)δ+(s2

43)dτ3dτ4. (8)

10These considerations make it appear unlikely that the contention of J. A. Wheeler and
R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945), that electrons do not act on themselves,
will be a successful concept in quantum electrodynamics.

11This is discussed in reference 5 in which it is pointed out that the concept of a wave
function loses accuracy if there are delayed self-actions.
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Figure 2: Interaction of an electron with itself, Eq. (6).

Putting for f(1) the plane wave u exp(−ip · x1) where pµ is the energy (p4)
and momentum of the electron (p2 = m2), and u is a constant 4-index
symbol, (8) becomes

−ie2
∫ ∫

(ũγµK+(4, 3)γµu)

×exp(ip · (x4 − x2))δ+(s2
43)dτ3dτ4,

the integrals extending over the volume V and time interval T . Since
K+(4, 3) depends only on the difference of the coordinates of 4 and 3, x43µ,
the integral on 4 gives a result (except near the surfaces of the region) in-
dependent of 3. When integrated on 3, therefore, the result is of order V T .
The effect is proportional to V , for the wave functions have been normal-
ized to unit volume. If normalized to volume V , the result would simply
be proportional to T . This is expected, for if the effect were equivalent to
a change in energy ∆E, the amplitude for arrival in f at t2 is altered by
a factor exp(−i∆E(t2 − t1)), or to first order by the difference −i(∆E)T .
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Figure 3: Interaction of an electron with itself. Momentum space, Eq. (11).

Hence, we have

∆E = e2

∫
(ũγµK+(4, 3)γµu)exp(ip · x43)δ+(s2

43)dτ4, (9)

integrated over all space-time dτ4. This expression will be simplified
presently. In interpreting (9) we have tacitly assumed that the wave func-
tions are normalized so that (u∗u = (ũγ4u) = 1. The equation may there-
fore be made independent of the normalization by writing the left side as
(∆E)(ũγ4)u), or since (ũγ4u) = (E/m)(ũu) and m∆m = E∆E, as ∆m(ũu)
where ∆m is an equivalent change in mass of the electron. In this form
invariance is obvious.

One can likewise obtain an expression for the energy shift for an electron

in a hydrogen atom. Simply replace K+ in (8), by K
(V )
+ , the exact kernel

for an electron in the potential, V = βe2/r, of the atom, and f by a wave
function (of space and time) for an atomic state. In general the ∆E which
results is not real. The imaginary part is negative and in exp(−i∆ET )
produces an exponentially decreasing amplitude with time. This is because
we are asking for the amplitude that an atom initially with no photon in the
field, will still appear after time T with no photon. If the atom is in a state
which can radiate, this amplitude must decay with time. The imaginary
part of ∆E when calculated does indeed give the correct rate of radiation
from atomic states. It is zero for the ground state and for a free electron.

In the non-relativistic region the expression for ∆E can be worked out
as has been done by Bethe.12 In the relativistic region (points 4 and 3 as

12H. A. Bethe, Phys. Rev. 72, 339 (1947).

14



close together as a Compton wave-length) the K
(V )
+ which should appear

in (8) can be replaced to first order in V by K+ plus K
(1)
+ (2, 1) given in I,

Eq. (13). The problem is then very similar to the radiationless scattering
problem discussed below.

4 EXPRESSION IN MOMENTUM AND
ENERGY SPACE

The evaluation of (9), as well as all the other more complicated expres-
sions arising in these problems, is very much simplified by working in the
momentum and energy variables, rather than space and time. For this we
shall need the Fourier Transform of δ+(s2

21) which is

−δ+(s2
21) = π−1

∫
exp(−ik · x21)k−2d4k, (10)

which can be obtained from (3) and (5) or from I, Eq. (32) noting that
I+(2, 1) for m2 = 0 is δ+(s2

21) from I, Eq. (34). The k−2 means (k · k)−1

Figure 4: Radiative correction to scattering, momentum space.

or more precisely the limit as δ → 0 of (k · k + iδ)−1. Further d4k means
(2π)−2dk1dk2dk3dk4. If we imagine that quanta are particles of zero mass,
then we can make the general rule that all poles are to be resolved by
considering the masses of the particles and quanta to have infinitesimal
negative imaginary parts.

Using these results we see that the self-energy (9) is the matrix element
between u and u of the matrix

(e2/πi)

∫
γµ(p− k−m)−1γµk

−2d4k, (11)
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where we have used the expression (I, Eq. (31)) for the Fourier transform
of K+. This form for the self-energy is easier to work with than is (9).

The equation can be understood by imagining (Fig. 3) that the electron
of momentum p emits (γµ) a quantum of momentum k, and makes its way
now with momentum p− k to the next event (factor (p− k−m)−1) which
is to absorb the quantum (another γµ). The amplitude of propagation of
quanta is k−2. (There is a factor e2/πi for each virtual quantum). One inte-
grates over all quanta. The reason an electron of momentum p propagates
as 1/(p − m) is that this operator is the reciprocal of the Dirac equation
operator, and we are simply solving this equation. Likewise light goes as
1/k2, for this is the reciprocal D’Alembertian operator of the wave equation
of light. The first γµ, represents the current which generates the vector po-
tential, while the second is the velocity operator by which this potential is
multiplied in the Dirac equation when an external field acts on an electron.

Using the same line of reasoning, other problems may be set up directly
in momentum space. For example, consider the scattering in a potential
A = Aµγµ varying in space and time as a exp(−iq ·x). An electron initially
in state of momentum p1 = p1µγµ will be deflected to state p2 where p2 =
p1 + q. The zero-order answer is simply the matrix element of a between
states 1 and 2. We next ask for the first order (in e2) radiative correction
due to virtual radiation of one quantum. There are several ways this can
happen. First for the case illustrated in Fig. 4(a), find the matrix:

Figure 5: Compton scattering, Eq. (15).

(e2/πi)

∫
γµ(p2 − k−m)−1a(p1 − k−m)−1γµk

−2d4k. (12)
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For in this case, first13 a quantum of momentum k is emitted (γµ), the
electron then having momentum p1 − k and hence propagating with factor
(p1 − k − m)−1. Next it is scattered by the potential (matrix a) receiv-
ing additional momentum q, propagating on then (factor (p2 − k −m)−1)
with the new momentum until the quantum is reabsorbed (γµ). The quan-
tum propagates from emission to absorption (k−2) and we integrate over all
quanta (d4k), and sum on polarization µ. When this is integrated on k4,
the result can be shown to be exactly equal to the expressions (16) and (17)
given in B for the same process, the various terms coming from residues of
the poles of the integrand (12).

Or again if the quantum is both emitted and reabsorbed before the
scattering takes place one finds (Fig. 4(b))

(e2/πi)

∫
a(p1 −m)−1γµ(p1 − k−m)−1γµk

−2d4k, (13)

or if both emission and absorption occur after the scattering, (Fig. 4(c))

(e2/πi)

∫
γµ(p2 − k−m)−1γµ(p2 −m)−1ak−2d4k. (14)

These terms are discussed in detail below.
We have now achieved our simplification of the form of writing matrix

elements arising from virtual processes. Processes in which a number of real
quanta is given initially and finally offer no problem (assuming correct nor-
malization). For example, consider the Compton effect (Fig. 5(a)) in which
an electron in state p1 absorbs a quantum of momentum q1, polarization
vector e1µ so that its interaction is e1µγµ = e1, and emits a second quantum
of momentum −q2 polarization e2 to arrive in final state of momentum p2.
The matrix for this process is e2(p1 + q1 −m)−1e1. The total matrix for
the Compton effect is, then,

e2(p1 + q1 −m)−1e1 + e1(p1 + q2 −m)−1e3, (15)

the second term arising because the emission of e2, may also precede the ab-
sorption of e1 (Fig. 5(b)). One takes matrix elements of this between initial
and final electron states (p1 + q1 = p2 − q2), to obtain the Klein Nishina
formula. Pair annihilation with emission of two quanta, etc., are given by
the same matrix, positron states being those with negative time component
of p. Whether quanta are absorbed or emitted depends on whether the time
component of q is positive or negative.

13First, next, etc., here refer not to the order in true time but to the succession of events
along the trajectory of the electron. That is, more precisely, to the order of appearance
of the matrices in the expressions.
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5 THE CONVERGENCE OF PROCESSES WITH
VIRTUAL QUANTA

These expressions are, as has been indicated, no more than a re-expression
of conventional quantum electrodynamics. As a consequence, many of them
are meaningless. For example, the self-energy expression (9) or (11) gives
an infinite result when evaluated. The infinity arises, apparently, from the
coincidence of the δ–function singularities in K+(4, 3) and δ+(s2

43). Only
at this point is it necessary to make a real departure from conventional
electrodynamics, a departure other than simply rewriting expressions in a
simpler form.

We desire to make a modification of quantum electrodynamics analogous
to the modification of classical electrodynamics described in a previous arti-
cle, A. There the δ(s2

12) appearing in the action of interaction was replaced
by f(s2

12) where f(x) is a function of small width and great height.
The obvious corresponding modification in the quantum theory is to

replace the δ+(s2) appearing the quantum mechanical interaction by a new
function f=(s2). We can postulate that if the Fourier transform of the
classical f(s2

12) is the integral over ail k of F (k2)exp(−ik ·x12)d4k, then the
Fourier transform of f+(s2) is the same integral taken over only positive
frequencies k4 for t2 > t1 and over only negative ones for t2 < t1 in analogy
to the relation of δ+(s2) to δ(s2). The function f(s2) = f(x · x) can be
written 14 as

f(x · x) = (2π)−2
∞∫

k4=0

∫
sin(k4|x4|)

× cos(K · x)dk4d
3Kg(k · k),

where g(k · k) is k−1
4 times the density of oscillators and may be expressed

for positive k4 as (A, Eq. (16))

g(k2) =

∞∫
0

(δ(k2)− δ(k2 − λ2))G(λ)dλ,

where
∞∫
0

G(λ)dλ = 1 and G involves values of λ large compared to m. This

simply means that the amplitude for propagation of quanta of momentum

14This relation is given incorrectly in A, equation just preceding 16.
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k is

−F+(k3) = π−1

∫ ∞
0

(k−2 − (k2 − λ2)−1)G(λ)dλ,

rather than k−2. That is, writing F+(k2) = −π−1k−2C(k2),

−f+(s2
12) = π−1

∫
exp(−ik · x12)k−2C(k2)d4k. (16)

Every integral over an intermediate quantum which previously involved a
factor d4k/k2 is now supplied with a convergence factor C(k2) where

C(k2) =

∫ ∞
0
−λ2(k2 − λ2)−1G(λ)dλ. (17)

The poles are defined by replacing k2 by k2 + iδ in the limit δ → 0. That is
λ2 may be assumed to have an infinitesimal negative imaginary part.

The function f+(s2
12) may still have a discontinuity in value on the light

cone. This is of no influence for the Dirac electron. For a particle satisfying
the Klein Gordon equation, however, the interaction involves gradients of
the potential which reinstates the δ function if f has discontinuities. The
condition that f is to have no discontinuity in value on the light cone implies
k2C(k2) approaches zero as k2 approaches infinity. In terms of G(λ) the
condition is ∞∫

0

λ2G(λ)dλ = 0. (18)

This condition will also be used in discussing the convergence of vacuum
polarization integrals.

The expression for the self-energy matrix is now

(e2/πi)

∫
γµ(p− k−m)−1γµk

−2d4kC(k2), (19)

which, since C(k2) falls off at least as rapidly as 1/k2, converges. For prac-
tical purposes we shall suppose hereafter that C(k2) is simply −λ2/(k2−λ2)
implying that some average (with weight G(λ)dλ) over values of λ may be
taken afterwards. Since in all processes the quantum momentum will be
contained in at least one extra factor of the form (p− k−m)−1 represent-
ing propagation of an electron while that quantum is in the field, we can
expect all such integrals with their convergence factors to converge and that
the result of ail such processes will now be finite and definite (excepting the
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processes with closed loops, discussed below, in which the diverging integrals
are over the momenta of the electrons rather than the quanta).

The integral of (19) with C(k2) = −λ2(k2−λ2)−1 noting that p2 = m2,

λ� m and dropping terms of order m/λ is (see Appendix A)

(e2/2π)[4m(ln(λ/m) +
1

2
)− p(ln(λ/m) + 5/4)]. (20)

When applied to a state of an electron of momentum p satisfying pu = mu,
it gives for the change in mass (as in B, Eq. (9))

∆m = m(e2/2π)(3 ln(λ/m) +
3

4
). (21)

6 RADIATIVE CORRECTIONS TO
SCATTERING

We can now complete the discussion of the radiative corrections to
scattering. In the integrals we include the convergence factor C(k2), so that
they converge for large k. Integral (12) is also not convergent because of the
well-known infrared catastrophy. For this reason we calculate (as discussed
in B) the value of the integral assuming the photons to have a small mass
λmin � m� λ. The integral (12) becomes

(e2/πi)
∫
γµ(p2 − k−m)−1a(p1 − k−m)−1

×γµ(k2 − γ2
min)−1d4kC(k2 − λ2

min),

which when integrated (see Appendix B) gives (e2/2π) times[
2

(
ln m
λmin

− 1

)(
1− 2θ

tan2θ

)
+ θtanθ

+ 4
tan2θ

θ∫
0

α tanαdα

]
a + 1

4m(qa− aq) 2θ
sin 2θ

+ ra,

(22)

where (q2)1/2 = 2m and we have assumed the matrix to operate between
states of momentum p1 and p2 = p1 + q and have neglected terms of order
λmin/m,m/λ, and q2/λ2. Here the only dependence on the convergence
factor is in the term ra, where

r = ln(λ/m) + 9/4− 2 ln(m/λmin). (23)
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As we shall see in a moment, the other terms (13), (14) give contributions
which just cancel the ra term. The remaining terms give for small q,

(e2/4π)

(
1

2m
(qa− aq) +

4q2

3m2
a

(
ln

m

λmin
− 3

8

))
, (24)

which shows the change in magnetic moment and the Lamb shift as inter-
preted in more detail in B.15

We must now study the remaining terms (13) and (14). The integral on
k in (13) can be performed (after multiplication by C(k2)) since it involves
nothing but the integral (19) for the self-energy and the result is allowed
to operate on the initial state u1, (so that p1u1 = mu1). Hence the factor
following a(p1 − m)−1 will be just ∆m. But, if one now tries to expand
1/(p1 − m) = (p1 + m)/(p2

1 − m2) one obtains an infinite result, since
p2

1 = m2. This is, however, just what is expected physically. For the
quantum can be emitted and absorbed at any time previous to the scattering.
Such a process has the effect of a change in mass of the electron in the state
1. It therefore changes the energy by ∆E and the amplitude to first order
in ∆E by −i∆E · t where t is the time it is acting, which is infinite. That
is, the major effect of this term would be canceled by the effect of change of
mass ∆m.

The situation can be analyzed in the following manner. We suppose that
the electron approaching the scattering potential a has not been free for an
infinite time, but at some time far past suffered a scattering by a potential b.
If we limit our discussion to the effects of ∆m and of the virtual radiation of
one quantum between two such scatterings each of the effects will be finite,
though large, and their difference is determinate. The propagation from b
to a is represented by a matrix

a(p′ −m)−1b, (25)

15That the result given in B in Eq. (19) was in error was repeatedly pointed out to the
author, in private communication, by V. F. Weisskopf and J. B. French, as their calcu-
lation, completed simultaneously with the author’s early in 1948, gave a different result.
French has finally shown that although the expression for the radiationless scattering B,
Eq. (18) or (24) above is correct, it was incorrectly joined into Bethe’s non-relativistic
result. He shows that the relation ln 2kmax−1 = lnλmin used by the author should have
been ln 2kmax − 5/6 = lnλmin. This results in adding a term −(1/6) to the logarithm in
B, Eq. (19) so that the result now agrees with that of J. B. French and V. F. Weisskopf,
Phys. Rev. 75, 1240 (1949) and N. H. Kroll and W. E. Lamb, Phys. Rev. 75, 388 (1949).
The author feels unhappily responsible for the very considerable delay in the publication
of French’s result occasioned by this error. This footnote is appropriately numbered.
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in which one is to integrate possibly over p′ (depending on details of the
situation). (If the time is long between b and a, the energy is very nearly
determined so that p

′2 is very nearly m2.)
We shall compare the effect on the matrix (25) of the virtual quanta and

of the change of mass ∆m. The effect of a virtual quantum is

(e2/πi)

∫
a(p′−m)−1γµ(p′−k−m)−1×γµ(p′−m)−1bk−2d4kC(k2), (26)

while that of a change of mass can be written

a(p′ −m)−1∆m(p′ −m)−1b, (27)

and we are interested in the difference (26)-(27). A simple and direct method
of making this comparison is just to evaluate the integral on k in (26) and
subtract from the result the expression (27) where ∆m is given in (21).
The remainder can be expressed as a multiple −r(p′2) of the unperturbed
amplitude (25);

−r(p′2)a(p′ −m)−1b. (28)

This has the same result (to this order) as replacing the potentials a and b in
(25) by (1− 1

2r(p
′2))a and (1− 1

2r(p
′2))b. In the limit, then, as p

′2 → m2 the

net effect on the scattering is −1
2ra where r, the limit of r(p

′2) as p
′2 → m2

(assuming the integrals have an infrared cut-off), turns out to be just equal
to that given in (23). An equal term −1

2ra arises from virtual transitions
after the scattering (14) so that the entire ra term in (22) is canceled.

The reason that r is just the value of (12) when q2 = 0 can also be seen
without a direct calculation as follows: Let us call p the vector of length m

in the direction of p′ so that if p
′2 = m(1 + ε)2 we have p′ = (1 + ε0p and

we take ε as very small, being of order T−1 where T is the time between the
scatterings b and a. Since (p′−m)−1 = (p′+m)/(p

′2−m2) ≈ (p+m)/2m2ε,
the quantity (25) is of order ε−1 or T . We shall compute corrections to it
only to its own order (ε−1) in the limit ε→ 0. The term (27) can be written
approximately16 as

(e2/πi)

∫
a(p′ −m)−1γµ(p− k−m)−1 × γµ(p′ −m)−1bk−2d4kC(k2),

16The expression is not exact because the substitution of ∆m by the integral in (19) is
valid only if p operates on a state such that p can be replaced by m. The error, however,
is of order a(p′−m)−1(p−m)(p′−m)−1b which is a((1 + ε)p +m)(p−m)× ((1 + ε)p +
m)p(2ε + ε2)−2m−4. But since 2 = m2 we have p(p −m) = −m(p −m) = (p −m)p so
the net result is approximately a(p − m)b/4m2 and is not of order 1/ε but smaller, so
that its effect drops out in the limit.
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using the expression (19) for ∆m. The net of the two effects is therefore
approximately17

−(e2/πi)
∫

a(p′ −m)−1γµ(p− k−m)−1εp(p− k−m)−1

×γµ(p′ −m)−1bk−2d4kC(k2),

a term now of order 1/ε (since (p′ − m)−1 ≈ (p + m) × (2m2ε)−1) and
therefore the one desired in the limit. Comparison to (28) gives for r the
expression

(p1 +m/2m)
∫
γµ(p1 − k−m)−1(p1m

−1)(p1 − k−m)−1

×γµk−2d4kC(k2).
(29)

The integral can be immediately evaluated, since it is the same as the
integral (12), but with q = 0, for a replaced by p1/m. The result is therefore
r · (p1/m) which when acting on the state u1 is just r, as p1u1 = mu1. For
the same reason the term (p1 + m)/2m in (29) is effectively 1 and we are
left with −r of (23).18

In more complex problems starting with a free electron the same type of
term arises from the effects of a virtual emission and absorption both previ-
ous to the other processes. They, therefore, simply lead to the same factor r
so that the expression (23) may be used directly and these renormalization
integrals need not be computed afresh for each problem.

In this problem of the radiative corrections to scattering the net result
is insensitive to the cut-off. This means, of course, that by a simple rear-
rangement of terms previous to the integration we could have avoided the
use of the convergence factors completely (see for example Lewis19). The
problem was solved in the manner here in order to illustrate how the use of

17We have used, to first order, the general expansion (valid for any operators A,B)

(A+B0−1 = A−1 −A−1BA−1 +A−1BA−1BA−1 − . . .
with A = p− k−m and B = p′ − p = εp to expand the difference of (p′ − k−m)−1 and
(p− k−m)−1.

18The renormalization terms appearing B, Eqs. (14), (15) when translated directly into
the present notation do not give twice (29) but give this expression with the central p1m

−1

factor replaced by mγ4/E1 where E1 = p1µ, for µ = 4. When integrated it therefore gives
ra((p1 +m)/2m)(mγ4/E1) or ra− ra(mγ4/E1)(p1−m)/2m. (Since p1γ4 +γ4p1 = 2E1)
which gives just ra, since p1u1 = mu1.

19H.W. Lewis, Phys. Rev. 73, 173 (1948).
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such convergence factors, even when they are actually unnecessary, may fa-
cilitate analysis somewhat by removing the effort and ambiguities that may
be involved in trying to rearrange the otherwise divergent terms.

The replacement of δ+ by f+ given in (16), (17) is not determined by the
analogy with the classical problem. In the classical limit only the real part
of δ+ (i.e., just δ) is easy to interpret. But by what should the imaginary
part, 1/(πs2), of δ+ be replaced? The choice we have made here (in den-
ning, as we have, the location of the poles of (17)) is arbitrary and almost
certainly incorrect. If the radiation resistance is calculated for an atom, as
the imaginary part of (8), the result depends slightly on the function f+.
On the other hand the light radiated at very large distances from a source is
independent of f+. The total energy absorbed by distant absorbers will not
check with the energy loss of the source. We are in a situation analogous to
that in the classical theory if the entire f function is made to contain only
retarded contributions (see A, Appendix). One desires instead the analogue
of 〈F 〉ret of A. This problem is being studied.

One can say therefore, that this attempt to find a consistent modification
of quantum electrodynamics is incomplete (see also the question of closed
loops, below). For it could turn out that any correct form of f+ which will
guarantee energy conservation may at the same time not be able to make
the self-energy integral finite. The desire to make the methods of simplifying
the calculation of quantum electrodynamic processes more widely available
has prompted this publication before an analysis of the correct form for f+

is complete. One might try to take the position that, since the energy dis-
crepancies discussed vanish in the limit λ → ∞, the correct physics might
be considered to be that obtained by letting λ → ∞ after mass renormal-
ization. I have no proof of the mathematical consistency of this procedure,
but the presumption is very strong that it is satisfactory. (It is also strong
that a satisfactory form for f+ can be found.)

7 THE PROBLEM OF VACUUM
POLARIZATION

In the analysis of the radiative corrections to scattering one type of
term was not considered. The potential which we can assume to vary as
aµexp(−iq ·x) creates a pair of electrons (see Fig. 6), momenta pa,−pb. This
pair then reannihilates, emitting a quantum q = qb − qa, which quantum
scatters the original electron from state 1 to state 2. The matrix element
for this process (and the others which can be obtained by rearranging the
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order in time of the various events) is

−(e2/πi)(ũ2γµu1)
∫
Sp[(pa + q−m)−1

×γµ(pa −m)−1γµ]d4paq
−2C(q2)aν .

(30)

This is because the potential produces the pair with amplitude proportional
to aνγν the electrons of momenta pa, and −(pa + q) proceed from there
to annihilate, producing a quantum (factor γµ) which propagates (factor
q−2C(q2)) over to the other electron, by which it is absorbed (matrix ele-
ment of γµ, between states 1 and 2 of the original electron (ũ2γµu1)). All
momenta pa and spin states of the virtual electron are admitted, which
means the spur and the integral on d4pa are calculated.

One can imagine that the closed loop path of the positron-electron pro-
duces a current

4πJµaν , (31)

which is the source of the quanta which act on the second electron. The
quantity

Jµν = −(e2/πi)
∫
Sp[(p + q−m)−1

×γµ(p−m)−1γµ]d4p,

(32)

is then characteristic for this problem of polarization of the vacuum.
One sees at once that Jµν diverges badly. The modification of δ to f

alters the amplitude with which the current jµ, will affect the scattered
electron, but it can do nothing to prevent the divergence of the integral (32)
and of its effects.

One way to avoid such difficulties is apparent. From one point of view
we are considering all routes by which a given electron can get from one
region of space-time to another, i.e., from the source of electrons to the
apparatus which measures them. From this point of view the closed loop
path leading to (32) is unnatural. It might be assumed that the only paths
of meaning are those which start from the source and work their way in a
continuous path (possibly containing many time reversals) to the detector.
Closed loops would be excluded. We have already found that this may be
done for electrons moving in a fixed potential.

Such a suggestion must meet several questions, however. The closed
loops are a consequence of the usual hole theory in electrodynamics. Among
other things, they are required to keep probability conserved. The proba-
bility that no pair is produced by a potential is not unity and its deviation
from unity arises from the imaginary part of Jµν . Again, with closed loops
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Figure 6: Vacuum polarization effect on scattering, Eq. (30).

excluded, a pair of electrons once created cannot annihilate one another
again, the scattering of light by light would be zero, etc. Although we are
not experimentally sure of these phenomena, this does seem to indicate that
the closed loops are necessary. To be sure, it is always possible that these
matters of probability conservation, etc., will work themselves out as simply
in the case of interacting particles as for those in a fixed potential. Lack-
ing such a demonstration the presumption is that the difficulties of vacuum
polarization are not so easily circumvented.20

An alternative procedure discussed in B is to assume that the function
K+(2, 1) used above is incorrect and is to be replaced by a modified function
K ′+ having no singularity on the light cone. The effect of this is to provide a
convergence factor C(p2 −m2) for every integral over electron momenta.21

This will multiply the integrand of (32) by C(p2 −m2)C((p + q)2 −m2),
since the integral was originally δ(pa − pb + q)d4pad

4pb and both pa and
pb get convergence factors. The integral now converges but the result is
unsatisfactory.22

One expects the current (31) to be conserved, that is qµjµ = 0 or

20It would be very interesting to calculate the Lamb shift accurately enough to be sure
that the 20 megacycles expected from vacuum polarization are actually present.

21This technique also makes self-energy and radiationless scattering integrals finite even
without the modification of δ+ to f+ for the radiation (and the consequent convergence
factor C(k2) for the quanta). See B.

22Added to the terms given below (33) there is a term 1
4
(λ3−2µ2 + 1

3
q2)δµν for C(k2) =

−λ2(k2 − λ2)−1 , which is not gauge invariant. (In addition the charge renormalization
has −7/6 added to the logarithm.)
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qµJµν = 0. Also one expects no current if a is a gradient, or aν = qν , times
a constant. This leads to the condition Jµνqν = 0 which is equivalent to
qµJµν = 0 since Jµν is symmetrical. But when the expression (32) is in-
tegrated with such convergence factors it does not satisfy this condition.
By altering the kernel from K to another, K ′, which does not satisfy the
Dirac equation we have lost the gauge invariance, its consequent current
conservation and the general consistency of the theory.

One can see this best by calculating Jµνqν directly from (32). The ex-
pression within the spur becomes (p + q−m)−1q(p−m)−1γµ which can be
written as the difference of two terms: (p−m)−1γµ− (p + q−m)−1γµ Each
of these terms would give the same result if the integration d4p were without
a convergence factor, for the first can be converted into the second by a shift
of the origin of p, namely p′ = p + q. This does not result in cancelation
in (32) however, for the convergence factor is altered by the substitution.

A method of making (32) convergent without spoiling the gauge in-
variance has been found by Bethe and by Pauli. The convergence fac-
tor for light can be looked upon as the result of superposition of the ef-
fects of quanta of various masses (some contributing negatively). Like-
wise if we take the factor C(p2 − m2) = −λ2(p2 − m2 − λ2)−1 so that
(p2 −m2)−1C(p2 −m2) = (p2 −m2)−1 − (p2 −m2 − λ2)−1 we are taking
the difference of the result for electrons of mass m and mass (λ2 + m2)1/2.
But we have taken this difference for each propagation between interactions
with photons. They suggest instead that once created with a certain mass
the electron should continue to propagate with this mass through all the
potential interactions until it closes its loop. That is if the quantity (32),
integrated over some finite range of p, is called Jµν(m2) and the correspond-
ing quantity over the same range of p, but with m replaced by (m2 +λ2)1/2

is Jµν(m2 + λ2) we should calculate

JPµν =

∞∫
0

[Jµν(m2)− Jµν(m2 + λ2)]G(λ)dλ, (32′)

the function G(λ) satisfying
∫∞

0 G(λ)dλ = 1 and
∫∞

0 G(λ)λ2dλ = 0. Then
in the expression for JPµν the range of p integration can be extended to
infinity as the integral now converges. The result of the integration using
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this method is the integral on dλ over G(λ) of (see Appendix C)

JPµν = −e2

π (qµqν − δµνq2)

(
−1

3 ln λ2

m2

−
[

4m2 + 2q2

3q2

(
1− θ

tanθ

)
− 1

9

])
,

(33)

with q2 = 4m2 sin2 θ.
The gauge invariance is clear, since qµ(qµqν−q2δµν) = 0. Operating (as it

always will) on a potential of zero divergence the (qµqν−δµνq2)aν , is simply
−q2aµ, the D’Alembertian of the potential, that is, the current producing the
potential. The term −1

3(ln(λ2/m2))(qµqν − q2δµν) therefore gives a current
proportional to the current producing the potential. This would have the
same effect as a change in charge, so that we would have a difference ∆(e2)
between e2 and the experimentally observed charge, e2 + ∆(e2), analogous
to the difference between m and the observed mass. This charge depends
logarithmically on the cut-off, ∆(e2)/e2 = −(2e2/3π) ln(λ/m). After this
renormalization of charge is made, no effects will be sensitive to the cut-off.

After this is done the final term remaining in (33), contains the usual
effects23 of polarization of the vacuum. It is zero for a free light quan-
tum (q2 = 0). For small q2 it behaves as (2/15)q2 (adding −1

5 to the
logarithm in the Lamb effect). For q2 > (2m)2 it is complex, the imagi-
nary part representing the loss in amplitude required by the fact that the
probability that no quanta are produced by a potential able to produce
pairs ((q2)1/2 > 2m) decreases with time. (To make the necessary analytic
continuation, imagine m to have a small negative imaginary part, so that
(1− q2/4m2 − 1)1/2 becomes −i(q2/4m2 − 1)1/2 as q2 goes from below to
above 4m2. Then θ = π/2 + iu where sin hu = +(q2/4m2 − 1)1/2, and
−1/tanθ = itanhu = +i(q2 − 4m2)1/2(q2)−1/2).

Closed loops containing a number of quanta or potential interactions
larger than two produce no trouble. Any loop with an odd number of inter-
actions gives zero (I, reference 9). Four or more potential interactions give
integrals which are convergent even without a convergence factor as is well
known. The situation is analogous to that for self-energy. Once the sim-
ple problem of a single closed loop is solved there are no further divergence
difficulties for more complex processes.24

23E. A. Uehling, Phys. Rev. 48, 55 (1935), R. Serber, Phys. Rev. 48, 49 (1935).
24There are loops completely without external interactions. For example, a pair is

created virtually along with a photon. Next they annihilate, absorbing this photon. Such
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8 LONGITUDINAL WAVES

In the usual form of quantum electrodynamics the longitudinal and
transverse waves are given separate treatment. Alternately the condition
(∂Aµ/∂xµ)Ψ = 0 is carried along as a supplementary condition. In the
present form no such special considerations are necessary for we are dealing
with the solutions of the equation −�2Aµ = 4πjµ, with a current jµ, which
is conserved ∂jµ/∂xµ = 0. That means at least �2(∂Aµ/∂xµ) = 0 and in
fact our solution also satisfies ∂Aµ/∂xµ = 0.

To show that this is the case we consider the amplitude for emission
(real or virtual) of a photon and show that the divergence of this amplitude
vanishes. The amplitude for emission for photons polarized in the µ direction
involves matrix elements of γµ. Therefore what we have to show is that the
corresponding matrix elements of qµγµ = q vanish. For example, for a first
order effect we would require the matrix element of q between two states p1

and p2 = p1+q. But since q = p2−p1 and (ũ2p1u1) = m(ũ2u1) = (ũ2p2u1)
the matrix element vanishes, which proves the contention in this case. It
also vanishes in more complex situations (essentially because of relation (34),
below) (for example, try putting e2 = q2 in the matrix (15) for the Compton
Effect).

To prove this in general, suppose ai, i = 1 to N are a set of plane wave
disturbing potentials carrying momenta qi, (e.g., some may be emissions or
absorptions of the same or different quanta) and consider a matrix for the
transition from a state of momentum p0 to pN such as aNΠN−1

t=1 (pi−m)−1ai,
where pi = pi−1 +qi (and in the product, terms with larger i are written to
the left). The most general matrix element is simply a linear combination of
these. Next consider the matrix between states p0 and pN +q in a situation
in which not only are the ai, acting but also another potential a exp(−iq ·x)
where a = q. This may act previous to all ai in which case it gives aNΠ(pi+
q−m)−1ai(p0 + q−m)−1q which is equivalent to +aNΠ(pi + q−m)−1ai
since +(p0 + q−m)−1q is equivalent to (p0 + q−m)−1 × (p0 + q−m) as
p0 is equivalent to m acting on the initial state. Likewise if it acts after all
the potentials it gives q(pN −m)−1aNΠ(pi −m)−1ai which is equivalent to
−aNΠ(pi−m)−1ai since pN + q−m gives zero on the final state. Or again

loops are disregarded on the grounds that they do not interact with anything and are
thereby completely unobservable. Any indirect effects they may have via the exclusion
principle have already been included.
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it may act between the potential ak and ak+1 for each k. This gives

N−1∑
k=1

aN ΠN−1
i=k+1(pi + q−m)−1ai(pk + q−m)−1

×q(pk −m)−1ak Πk−1
j=1(pj −m)−1aj .

However,

(pk + q−m)−1q(pk −m)−1 = (pk −m)−1 − (pk + q−m)−1, (34)

so that the sum breaks into the difference of two sums, the first of which
may be converted to the other by the replacement of k by k − 1. There
remain only the terms from the ends of the range of summation,

+aN
N−1
Π
i=1

(pi −m)−1ai − aN
N−1
Π
i=1

(pi + q−m)−1ai.

These cancel the two terms originally discussed so that the entire effect is
zero. Hence any wave emitted will satisfy ∂Aµ/∂xµ = 0. Likewise lon-
gitudinal waves (that is, waves for which Aµ = ∂φ/∂xµ or a = q cannot
be absorbed and will have no effect, for the matrix elements for emission
and absorption are similar. (We have said little more than that a poten-
tial Aµ = ∂ϕ/∂xµ has no effect on a Dirac electron since a transformation
ψ′ = exp(−iφ)ψ removes it. It is also easy to see in coordinate representa-
tion using integrations by parts.)

This has a useful practical consequence in that in computing probabil-
ities for transition for unpolarized light one can sum the squared matrix
over all four directions rather than just the two special polarization vectors.
Thus suppose the matrix element for some process for light polarized in
direction eµ, is eµMµ. If the light has wave vector qµ, we know from the
argument above that qµMµ = 0. For unpolarized light progressing in the
z direction we would ordinarily calculate M2

x + M2
y . But we can as well

sum M2
x +M2

y +M2
z −M2

t for qµMµ implies Mt = Mz since qt = qz for free
quanta. This shows that unpolarized light is a relativistically invariant con-
cept, and permits some simplification in computing cross sections for such
light.

Incidentally, the virtual quanta interact through terms like γµ . . . γµk
−2d4k.

Real processes correspond to poles in the formulae for virtual processes. The
pole occurs when k2 = 0, but it looks at first as though in the sum on all
four values of µ, of γµ . . . γµ we would have four kinds of polarization instead
of two. Now it is clear that only two perpendicular to k are effective.
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The usual elimination of longitudinal and scalar virtual photons (leading
to an instantaneous Coulomb potential) can of course be performed here too
(although it is not particularly useful). A typical term in a virtual transition
is γµ . . . γµk

−2d4k where the . . . represent some intervening matrices. Let us
choose for the values of µ, the time t, the direction of vector part K, of k, and
two perpendicular directions 1, 2. We shall not change the expression for
these two 1, 2 for these are represented by transverse quanta. But we must
find (γt . . . γt)− (γK . . . γK). Now k = k4γt −KγK, where K = (K ·K)1/2,
and we have shown above that k replacing the γµ. gives zero.25 Hence KγK

is equivalent to k4γt and

(γt . . . γt)− (γK . . . γK) = ((K2 − k2
4)/K2)(γt . . . γy),

so that on multiplying by k−2d4k = d4k(k2
4 − K2)−1 the net effect is

−(γt . . . γt)d
4k/K2. The γt means just scalar waves, that is, potentials pro-

duced by charge density. The fact that 1/K2 does not contain k4 means that
k4 can be integrated first, resulting in an instantaneous interaction, and the
d3K/K2 is just the momentum representation of the Coulomb potential,
1/r.

25A little more care is required when both γµ’s act on the same particle. Define x =
k4γt + KγK, and consider (k . . .x) + x . . .k). Exactly this term would arise if a system,
acted on by potential x carrying momentum −k, is disturbed by an added potential k
of momentum +k (the reversed sign of the momenta in the intermediate factors in the
second term x . . .k has no effect since we will later integrate over all k). Hence as shown
above the result is zero, hut since (k . . .x) + (x . . .k) = k2

4(γt . . . γt) −K2(γK . . . γK) we
can still conclude (γK . . . γK) = k2

4K
−2(γt . . . γt).
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9 KLEIN GORDON EQUATION

The methods may be readily extended to particles of spin zero satisfying
the Klein Gordon equation,26

�2ψ −m2ψ = i∂(Aµψ)/∂xµ + iAµ∂ψ/∂xµ −AµAµψ. (35)

The important kernel is now I+(2, 1) denned in (I, Eq. (32)). For a free
particle, the wave function ψ(20 satisfies +�2ψ −m2ψ = 0. At a point, 2,
inside a space time region it is given by

ψ(2) =

∫
[ψ(1)∂I+(2, 1)/∂x1µ − (∂ψ/∂x1µ)I+(2, 1)]Nµ(1)d3V1,

(as is readily shown by the usual method of demonstrating Green’s the-
orem) the integral being over an entire 3-surface boundary of the region
(with normal vector Nµ). Only the positive frequency components of ψ con-
tribute from the surface preceding the time corresponding to 2, and only
negative frequencies from the surface future to 2. These can be interpreted
as electrons and positrons in direct analogy to the Dirac case.

The right-hand side of (35) can be considered as a source of new waves
and a series of terms written down to represent matrix elements for processes
of increasing order. There is only one new point here, the term in AµAµ by
which two quanta can act at the same time. As an example, suppose three
quanta or potentials, aµexp(−iqa · x), bµexp(−iqb · x), and cµexp(iqe · x)
are to act in that order on a particle of original momentum p0µ, so that
pa = p0 + qa, and pb = pa + qb; the final momentum being pc = pb + qc.

26The equations discussed in this section were deduced from the formulation of the Klein
Gordon equation given in reference 5, Section 14. The function ψ in this section has only
one component and is not a spinor. An alternative formal method of making the equations
valid for spin zero and also for spin 1 is (presumably) by use of the Kemmer-Duffin matrices
βµ satisfying the commutation relation

βµβνβσ + βσβνβµ = δµνβσ + δσνβµ.

If we interpret a to mean aµβµ, rather than aµγµ, for any aµ, all of the equations in mo-
mentum space will remain formally identical to those for the spin 1/2; with the exception
of those in which a denominator (p−m)−1 has been rationalized to (p +m)(p2 −m2)−1

since p2 is no longer equal to a number, p · p. But p3 does equal (p · p)p that
(p − m)−1 may now be interpreted as (mp + m2 + p2 − p · p)(p · p − m2)−1. This im-
plies that equations in coordinate space will be valid of the function K+(2, 1) is given as
K+(2, 1) = [(iO2 +m)−m−1(O2 +�2

2)]iI+(2, 1) with O2 = βµ∂/∂x2µ. This is all in virtue
of the fact that the many component wave function ψ (5 components for spin 0, 10 for
spin 1) satisfies (iO −m)ψ = aψ which is formally identical to the Dirac Equation. See
W. Pauli, Rev. Mod. Phys. 13, 203 (1940).
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The matrix element is the sum of three terms (p2 = pµpµ) (illustrated in
Fig. 7)

(pc · c+ pb · c)(p2
b −m2)−1(pb · b+ pa · b)× (p2

a −m2)−1(pa · a+ p0 · a)

−(pc · c+ pb · c)(p2
b −m2)−1(b · a)− (c · b)(p2

a −m2)−1(pa · a+ p0 · a).
(36)

The first comes when each potential acts through the perturbation
i∂(Aµψ)/∂xµ + iAµ∂ψ/∂xµ. These gradient operators in momentum space
mean respectively the momentum after and before the potential Aµ oper-
ates. The second term comes from bµ and aµ acting at the same instant
and arises from the AµAµ term in (a). Together bµ and aµ carry momentum
qbµ + qaµ so that after b · a operates the momentum is p0 + qa + qb or pb.
The final term comes from cµ and bµ operating together in a similar manner.
The term AµAµ thus permits a new type of process in which two quanta can
be emitted (or absorbed, or one absorbed, one emitted) at the same time.
There is no a · c term for the order a, b, c we have assumed. In an actual
problem there would be other terms like (36) but with alterations in the
order in which the quanta a, b, c act. In these terms a · c would appear.

As a further example the self-energy of a particle of momentum pµ is

(e2/2πim)

∫
[(2p− k)µ((p− k)2 −m2)−1 × (2p− k)µ − δµµ]d4kk−2C(k2),

where the δµµ comes from the AµAµ term and represents the possibility of
the simultaneous emission and absorption of the same virtual quantum. This
integral without the C(k2) diverges quadratically and would not converge if
C(k2) = −λ2/(k2 − λ2). Since the interaction occurs through the gradients
of the potential, we must use a stronger convergence factor, for example
C(k2) = λ4(k2 − λ2)−2, or in general (17) with

∫∞
0 λ2G(λ)dλ = 0. In this

case the self-energy converges but depends quadratically on the cut-off λ

and is not necessarily small compared to m. The radiative corrections to
scattering after mass renormalization are insensitive to the cut-off just as
for the Dirac equation.

When there are several particles one can obtain Bose statistics by the
rule that if two processes lead to the same state but with two electrons ex-
changed, their amplitudes are to be added (rather than subtracted as for
Fermi statistics). In this case equivalence to the second quantization treat-
ment of Pauli and Weisskopf should be demonstrable in a way very much
like that given in I (appendix) for Dirac electrons. The Bose statistics mean
that the sign of contribution of a closed loop to the vacuum polarization is
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the opposite of what it is for the Fermi case (see I). It is (pb = pa + q)

Jµν = e2

2πim

∫
[(pbµ + paµ)(pbν + paν)(p2

a −m2)−1

×(p2
b −m2)−1 − δµν(p2

a −m2)−1 − δµν(p2
b −m2)−1]d4pa

giving,

JPµν =
e2

π
(qµqν − δµνq2)

[
1

6
ln
λ2

m2
+

1

9
− 4m2 − q2

3q2

(
1− θ

tanθ

)]
,

the notation as in (33). The imaginary part for (q2)1/2 > 2m is again
positive representing the loss in the probability of finding the final state
to be a vacuum, associated with the possibilities of pair production. Fermi
statistics would give a gain in probability (and also a charge renormalization
of opposite sign to that expected).

Figure 7: Klein-Gordon particle in three potentials, Eq, (36). The coupling
to the electromagnetic field is now, for example, p0 · a + pa · a, and a new
possibility arises, (b), of simultaneous interaction with two quanta a ·b. The
propagation factor is now (p · p−m2)−1 for a particle of momentum pµ.

10 APPLICATION TO MESON THEORIES

The theories which have been developed to describe mesons and the in-
teraction of nucleons can be easily expressed in the language used here. Cal-
culations, to lowest order in the interactions can be made very easily for the
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various theories, but agreement with experimental results is not obtained.
Most likely all of our present formulations are quantitatively unsatisfactory.
We shall content ourselves therefore with a brief summary of the methods
which can be used.

The nucleons are usually assumed to satisfy Dirac’s equation so that the
factor for propagation of a nucleon of momentum p is (p−M)−1 where M
is the mass of the nucleon (which implies that nucleons can be created in
pairs). The nucleon is then assumed to interact with mesons, the various
theories differing in the form assumed for this interaction.

First, we consider the case of neutral mesons. The theory closest to
electrodynamics is the theory of vector mesons with vector coupling. Here
the factor for emission or absorption of a meson is gγµ, when this meson is
“polarized” in the µ direction. The factor g the “mesonic charge,” replaces
the electric charge e. The amplitude for propagation of a meson of momen-
tum q in intermediate states is (q2 − µ2)−1 (rather than q−2 as it is for
light) where µ is the mass of the meson. The necessary integrals are made
finite by convergence factors C(q2 − µ2) as in electrodynamics. For scalar
mesons with scalar coupling the only change is that one replaces the γµ by
1 in emission and absorption. There is no longer a direction of polarization,
µ, to sum upon. For pseudo-scalar mesons, pseudoscalar coupling replace
γµ by γ5 = iγxγyγzγt. For example, the self-energy matrix of a nucleon of
momentum p in this theory is

(g2/πi)

∫
γ5(p− k−M)−1γ5d

4k(k2 − µ2)−1C(k2 − µ2).

Other types of meson theory result from the replacement of γµ, by other
expressions (for example by 1

2(γµγν − γνγµ) with a subsequent sum over
all µ and ν for virtual mesons). Scalar mesons with vector coupling result
from the replacement of γµ by µ−1q where q is the final momentum of
the nucleon minus its initial momentum, that is, it is the momentum of the
meson if absorbed, or the negative of the momentum of a meson emitted. As
is well known, this theory with neutral mesons gives zero for all processes,
as is proved by our discussion on longitudinal waves in electrodynamics.
Pseudoscalar mesons with pseudo-vector coupling corresponds to γµ being
replaced by µ−1γ5q white vector mesons with tensor coupling correspond
to using (2µ)−1(γµq − qγµ). These extra gradients involve the danger of
producing higher divergencies for real processes. For example, γ5q gives a
logarithmically divergent interaction of neutron and electron.27 Although

27M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949).
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these divergencies can be held by strong enough convergence factors, the
results then are sensitive to the method used for convergence and the size
of the cut-off values of λ. For low order processes µ−1γ5q is equivalent to
the pseudoscalar interaction 2Mµ−1γ5 because if taken between free particle
wave functions of the nucleon of momenta p1 and p2 = p1 + q, we have

(ũ2γ5qu1) = (ũ2γ5(p2 − p1)u1) = −(ũ2p2γ5u1)

−(ũ2γ5p1u1) = −2M(ũ2γ5u1)

since γ5 anticommutes with p2 and p2 operating on the state 2 equivalent
to M as is 1 on the state 1. This shows that the γ5 interaction is unusually
weak in the non-relativistic limit (for example the expected value of γ5 for
a free nucleon is zero), but since γ2

5 = 1 is not small, pseudoscalar theory
gives a more important interaction in second order than it does in first.
Thus the pseudoscalar coupling constant should be chosen to fit nuclear
forces including these important second order processes.28 The equivalence
of pseudoscalar and pseudo-vector coupling which holds for low order pro-
cesses therefore does not hold when the pseudoscalar theory is giving its
most important effects. These theories will therefore give quite different
results in the majority of practical problems.

In calculating the corrections to scattering of a nucleon by a neutral
vector meson field (γµ) due to the effects of virtual mesons, the situation is
just as in electrodynamics, in that the result converges without need for a
cut-off and depends only on gradients of the meson potential. With scalar
(1) or pseudoscalar (γµ) neutral mesons the result diverges logarithmically
and so must be cut off. The part sensitive to the cut-off, however, is di-
rectly proportional to the meson potential. It may thereby be removed by a
renormalization of mesonic charge g. After this renormalization the results
depend only on gradients of the meson potential and are essentially inde-
pendent of cut-off. This is in addition to the mesonic charge renormalization
coming from the production of virtual nucleon pairs by a meson, analogous
to the vacuum polarization in electrodynamics. But here there is a further
difference from electrodynamics for scalar or pseudoscalar mesons in that
the polarization also gives a term in the induced current proportional to the
meson potential representing therefore an additional renormalization of the
mass of the meson which usually depends quadratically on the cut-off.

Next consider charged mesons in the absence of an electromagnetic field.
One can introduce isotopic spin operators in an obvious way. (Specifically

28H. A. Bethe, Bull. Am. Phys. Soc. 24, 3, Z3 (Washington, 1949).
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replace the neutral γ5, say, by τiγ − 5 and sum over i = 1, 2, where τ1 =
τ++τ−, τ2 = i(τ+−τ−) and τ+ changes neutron to proton (τ+ on proton = 0)
and τ− changes proton to neutron.) It is just as easy for practical problems
simply to keep track of whether the particle is a proton or a neutron on a
diagram drawn to help write down the matrix element. This excludes certain
processes. For example in the scattering of a negative meson from q1 to q2

by a neutron, the meson q2 must be emitted first (in order of operators, not
time) for the neutron cannot absorb the negative meson q1 until it becomes
a proton. That is, in comparison to the Klein Nishina formula (15), only
the analogue of second term (see Fig. 5(b)) would appear in the scattering
of negative mesons by neutrons, and only the first term (Fig. 5 (a)) in the
neutron scattering of positive mesons.

The source of mesons of a given charge is not conserved, for a neutron
capable of emitting negative mesons may (on emitting one, say) become
a proton no longer able to do so. The proof that a perturbation q gives
zero, discussed for longitudinal electromagnetic waves, fails. This has the
consequence that vector mesons, if represented by the interaction γµ, would
not satisfy the condition that the divergence of the potential is zero. The
interaction is to be taken29 as γµ−µ−2qµq in emission and as γµ in absorp-
tion if the real emission of mesons with a non-zero divergence of potential
is to be avoided. (The correction term µ−2qµq gives zero in the neutral
case.) The asymmetry in emission and absorption is only apparent, as this
is clearly the same thing as subtracting from the original γµ . . . γµ, a term
µ−2q . . .q. That is, if the term −µ−2qµq is omitted the resulting theory

29The vector meson field potentials ϕµ satisfy

−∂/∂xν(∂ϕµ/∂xν − ∂ϕν/∂xµ)− µ2ϕµ = −4πsµ,

where sµ, the source for such mesons, is the matrix element of γµ between states of neutron
and proton. By taking the divergence ∂/∂xµ of both sides, conclude that ∂ϕν/∂xν =
4πµ−2∂sν/∂xν , so that the original equation can lie rewritten as

�2ϕµ − µ2ϕµ = −4π(sµ + µ−2∂/∂xµ(∂sν/∂xν)).

The right hand side gives in momentum representation γµ−µ−2qµqνγν the left yields the
(q2−µ2)−1 and finally the interaction sµϕµ in the Lagrangian gives the γµ on absorption.

Proceeding in this way find generally that particles of spin one can be represented by a
four-vector uµ (which, for a free particle of momentum q satisfies q ·u = 0). The propaga-
tion of virtual particles of momentum q from state ν to µ is represented by multiplication
by the 4-4 matrix (or tensor) Pµν = (δµν −µ2qµqν)× (q2−µ2)−1. The first-order interac-
tion (from the Proca equation) with an electromagnetic potential a exp(ik ·x) corresponds
to multiplication by the matrix Eµν = (q2 · a + q1 · a)δµν − q2νaµ − q1νaν , where q1 and
q2 = q1 + k are the momenta before and after the interaction. Finally, two potentials a, b
may act simultaneously, with matrix E′µν = −(a · b)δµν + bµaν
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describes a combination of mesons of spin one and spin zero. The spin zero
mesons, coupled by vector coupling q, are removed by subtracting the term
µ−2q . . .q.

The two extra gradients q . . .q make the problem of diverging integrals
still more serious (for example the interaction between two protons corre-
sponding to the exchange of two charged vector mesons depends quadrati-
cally on the cut-off if calculated in a straightforward way). One is tempted in
this formulation to choose simply γµ . . . γµ and accept the admixture of spin
zero mesons. But it appears that this leads in the conventional formalism to
negative energies for the spin zero component. This shows one of the advan-
tages of the method of second quantization of meson fields over the present
formulation. There such errors of sign are obvious while here we seem to
be able to write seemingly innocent expressions which can give absurd re-
sults. Pseudovector mesons with pseudovector coupling correspond to using
γ5(γµ − µ−2qµq) for absorption and γ5γµ for emission for both charged and
neutral mesons.

In the presence of an electromagnetic field, whenever the nucleon is a
proton it interacts with the field in the way described for electrons. The
meson interacts in the scalar or pseudoscalar case as a particle obeying the
Klein-Gordon equation. It is important here to use the method of calculation
of Bethe and Pauli, that is, a virtual meson is assumed to have the same
“mass” during all its interactions with the electromagnetic field. The result
for mass µ and for (µ2 + λ2)1/2 are subtracted and the difference integrated
over the function G(λ)dλ. A separate convergence factor is not provided
for each meson propagation between electromagnetic interactions, otherwise
gauge invariance is not insured. When the coupling involves a gradient,
such as γ − 5q where q is the final minus the initial momentum of the
nucleon, the vector potential A must be subtracted from the momentum
of the proton. That is, there is an additional coupling ±γ5A (plus when
going from proton to neutron, minus for the reverse) representing the new
possibility of a simultaneous emission (or absorption) of meson and photon.

Emission of positive or absorption of negative virtual mesons are repre-
sented in the same term, the sign of the charge being determined by temporal
relations as for electrons and positrons.

Calculations are very easily carried out in this way to lowest order in
g2 for the various theories for nucleon interaction, scattering of mesons by
nucleons, meson production by nuclear collisions and by gamma-rays, nu-
clear magnetic moments, neutron electron scattering, etc., However, no good
agreement with experiment results, when these are available, is obtained.
Probably all of the formulations are incorrect. An uncertainty arises since
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the calculations are only to first order in g2, and are not valid if g2/~c is
large.

The author is particularly indebted to Professor H. A. Bethe for his
explanation of a method of obtaining finite and gauge invariant results for
the problem of vacuum polarization. He is also grateful for Professor Bethe’s
criticisms of the manuscript, and for innumerable discussions during the
development of this work. He wishes to thank Professor J. Ashkin for his
careful reading of the manuscript.

APPENDIX

In this appendix a method will be illustrated by which the simpler integrals
appearing in problems in electrodynamics can be directly evaluated. The integrals
arising in more complex processes lead to rather complicated functions, but the
study of the relations of one integral to another and their expression in terms of
simpler integrals may be facilitated by the methods given here.

As a typical problem consider the integral (12) appearing in the first order
radiationless scattering problem:∫

γµ(p2 − k−m)−1a(p1 − k−m)−1γµk−2d4kC(k2), (1a)

where we shall take C(k2) to be typically −λ2(k2 − λ2)−1 and d4k means
(2π)−2dk1dk2dk3dk4. We first rationalize the factors (p− k−m)−1 = (p− k +m)
((p− k)2 −m2)−1 obtaining,∫

γµ(p2 − k +m)a(p1 − k +m)γµk−2d4kC(k2)

×((p1 − k)2 −m2)−1((p2 − k)2 −m2)−1. (2a)

The matrix expression may be simplified. It appears to be best to do so after the
integrations are performed. Since AB = 2A · B − BA where A · B = AµBµ is a
number commuting with all matrices, find, if R is any expression, and A a vector,
since γµA = −Aγµ + 2Aµ,

γµARγµ = −AγµRγµ + 2RA. (3a)

Expressions between two γµ’s can be thereby reduced by induction. Particularly
useful are

γµγµ = 4

γµAγµ = −2A

γµABγµ = 2(AB + BA) = 4A ·B
γµABCγµ = −2CBA (4a)
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where A,B,C are any three vector-matrices (i.e., linear combinations of the four
γµs),

In order to calculate the integral in (2a) the integral may be written as the sum
of three terms (since k = kσγσ),

γµ(p2 +m)a(p1 +m)γµJ1 − [γµγσa(p1 +m)γµ

+γµ(p2 +m)aγσγµ]J2 + γµγσaγτγµJ3, (5a)

where

J(1; 2; 3) =

∫
(1; kσ; kσkτ )k−2d4kC(k2)

×((p2 − k)2 −m2)−1((p1 − k)2 −m2)−1. (6a)

That is for J1 the (1; kσ; kσkτ ) is replaced by 1, for J2 by kσ and for J3 by kσkτ .
More complex processes of the first order involve more factors like ((p3−k)2−

m2)−1 and a corresponding increase in the number of k’s which may appear in
the numerator, as kσkτkν . . .. Higher order processes involving two or more virtual
quanta involve similar integrals but with factors possibly involving k + k′ instead
of just k, and the integral extending on k−2d4kC(k2)k

′−2d4kC(
′2). They can be

simplified by methods analogous to those used on the first order integrals.
The factors (p− k)2 −m2 may be written

(p− k)2 −m2 = k2 − 2p · k −∆, (7a)

where ∆ = m2−p2, ∆1 = m2
1−p2

1, etc., and we can consider dealing with cases of
greater generality in that the different denominators need not have the same value
of the mass m. In our specific problem (6a) p2

1 = m2 that ∆1 = 0, but we desire
to work with greater generality.

Now for the factor C(k2)/k2 we shall use −λ2(k2 − λ2)−1k−2. This can be
written as

−λ2/(k2 − λ2)k2 = k−2C(k2) = −
λ2∫
0

dL(k2 − L)−2. (8a)

Thus we can replace k−2C(k2) by (k2 − L)−2 and at the end integrate the result
with respect to L from zero to λ2. We can for many practical purposes consider
λ2 very large relative to m2 or p2. When the original integrai converges even
without the convergence factor, it will be obvious since the L integration will then
be convergent to infinity. If an infra-red catastrophe exists in the integral one can
simply assume quanta have a small mass λmin and extend the integral on L from
λ2

min to λ2, rather than from zero to λ2.
We then have to do integrals of the form∫
(1; kσ; kσkτd

4k(k2 − L)−2(k2 − 2p1 · k −∆1)−1 × (k2 − 2p2 · k −∆2)−1, (9a)

where by (1; kσ; kσkτ ) we mean that in the place of this symbol either 1, or kσ or
kσkτ may stand in different cases. In more complicated problems there may be
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more factors (k2 − 2pi · k −∆i)
−1 or other powers of these factors (the (k2 −L)−2

may be considered as a special case of such a factor with pi = 0, ∆i = L) and
further factors like kσkτkρ . . . in the numerator. The poles in all the factors are
made definite by the assumption that L, and the ∆’s have infinitesimal negative
imaginary parts.

We shall do the integrals of successive complexity by induction. We start with
the simplest convergent one, and show∫

d4k(k2 − L)−3 = (8iL)−1. (10a)

For this integral is
∫

(2π)−2dk4d
3K(k2

4 − K · K − L)−3 where the vector K, of
magnitude K = (K ·K)1/2 is k1, k2, k3. The integral on k4 shows third order
poles at k4 = +(K2 + L)1/2 and k4 = −(K2 + L)1/2. Imagining, in accordance
with our definitions, that L has a small negative imaginary part only the first is
below the real axis. The contour can be closed by an infinite semi-circle below
this axis, without change of the value of the integral since the contribution from
the semi-circle vanishes in the limit. Thus the contour can be shrunk about the
pole k4 = +(K2 + L)1/2 and the resulting k4, integral is −2πi times the residue
at this pole. Writing k4 = (k2 + L)1/2 + ε and expanding (k2

4 − K2 − L)−3 =
ε−3(ε + 2(K2 + L)1/2)−3 in powers of ε, the residue, being the coefficient of the
term ε−1, is seen to be 6(2(K2 + L)1/2)−5 so our integral is

−(3i/32π)

∞∫
0

4πK2dK(K2 + L)−5/2 = (3/8i)(1/3L)

establishing (10a).
We also have

∫
kσd

4k(k2 − L)−3 = 0 from the symmetry in the k space. We
write these results as

(8i)

∫
(1; kσ)d4k(k2 − L)−3 = (1; 0)L−1, (11a)

where in the brackets (1; kσ) and (1; 0) corresponding entries are to he used.
Substituting k = k′ − p in (11a) and calling L− p2 = ∆ shows that

(8i)

∫
(1; kσ)d4k(k2 − 2p · k −∆)−3 = (1; pσ)(p2 + ∆)−1. (12a)

By differentiating both sides of (12a) with respect to ∆ or with respect to pτ there
follows directly

(24i)

∫
(1; kσ; kσkτ )d4k(k2 − 2p · k −∆)−4

= −(1; pσ; pσpτ − 1

2
δστ (p2 + ∆))(p2 + ∆)−2. (13a)

Further differentiations give directly successive integrals including more k factors
in the numerator and higher powers of (k2 − 2p · k −∆) in the denominator.
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The integrals so far only contain one factor in the denominator. To obtain
results for two factors we make use of the identity

a−1b−1 =

∫ 1

0

dx(ax+ b(1− x))−2, (14a)

(suggested by some work of Schwinger’s involving Gaussian integrals). This rep-
resents the product of two reciprocals as a parametric integral over one and will
therefore permit integrals with two factors to be expressed in terms of one. For
other powers of a, b we make use of all of the identities, such as

a−2b−1 =

∫ 1

0

2xdx(ax+ b(1− x))−3, (15a)

deducible from (14a) by successive differentiations with respect to a or b. To perform
an integral, such as

(8i)

∫
(1; kσ)d4k(k2 − 2p1 · k −∆1)−2(k2 − 2p2 · k −∆2)−1, (16a)

write, using (15a),

(k2 − 2p1 · k −∆1)−2(k2 − 2p2 · k −∆2)−1 =

∫ 1

0

2xdx(k2 − 2px · k −∆x)−3,

where
px = xp1 + (1− x)p2 and ∆x = x∆1 + (1− x)∆2, (17a)

(note that ∆x is not equal to m2 − p2
x) so that the expression (l6a) is

(8i)
∫ 1

0
2xdx(1; kσ)d4k(k2 − 2px · k∆x)−3 which may now be evaluated by (12a)

and is

(16a) =

∫ 1

0

(1; pxσ)2xdx(p2
x + ∆x)−1, (18a)

where, px, ∆x are given in (17a). The integral in (18a) is elementary, being the
integral of ratio of polynomials, the denominator of second degree in x. The general
expression although readily obtained is a rather complicated combination of roots
and logarithms.

Other integrals can be obtained again by parametric differentiation. For exam-
ple differentiation of (16a), (18a) with respect to ∆2 or p2τ gives

(8i)

∫
(1; kσ; kσkτ )d4k(k2 − 2p1 · k −∆1)−2(k2 − 2p2 · k −∆2)−2

= −
∫ 1

0

(1; pxσ; pxσpxτ − 1

2
δστ (x2p2 + ∆x))× 2x(1− x)dx(p2

x + ∆x)−2, (19a)

again leading to elementary integrals.
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As an example, consider the case that the second factor is just (k2 −L)−2 and
in the first put p1 = p, ∆1 = ∆. Then px = xp, ∆x−x∆+(1−x)L. There results

(8i)

∫
(1; kσ; kσkτ )d4k(k2 − L)−2(k2 − 2p · k −∆)−2

= −
∫ 1

0

(1;xpσ;x2pσpτ − 1

2
δστ (x2p2 + ∆x))× 2x(1− x)dx(x2p2 + ∆x)−2. (20a)

Integrals with three factors can be reduced to those involving two by using (14a)
again. They, therefore, lead to integrals with two parameters (e.g., see application
to radiative correction to scattering below).

The methods of calculation given in this paper are deceptively simple when
applied to the lower order processes. For processes of increasingly higher orders
the complexity and difficulty increases rapidly, and these methods soon become
impractical in their present form.

A. Self-Energy

The self-energy integral (19) is

(e2/πi)

∫
γµ(p− k−m)−1γµk−2d4kC(k2), (19)

so that it requires that we find (using the principle of (8a)) the integral on L from
0 to λ2 of ∫

γµ(p− k +m)γµd
4k(k2 − L)−2(k2 − 2p · k)−1,

since (p− k)2 − m2 = k2 − 2p · k, as p2 = m2. This is of the form (16a) with
∆1 = L, p1 = 0, ∆2 = 0, p2 = p so that (18a) gives, since px = (1−x)p, ∆x = xL,

(8i)

∫
(1; kσ)d4k(k2−L)−2(k2−2p ·k)−1 =

∫ 1

0

(1; (1−x)pσ02xdx((1−x)2m2
xL)−1,

or performing the integral on L, as in (8),

(8i)

∫
(1; kσ)d4kk−2C(k2)(k2−2p·k)−1 =

∫ 1

0

(1; (1−x)pσ)2dx ln
xλ2 + (1− x)2m2

(1− x)2m2 .

Assuming now that λ2 � m2 we neglect (1 − x)2m2 relative to xλ2 in the ar-
gument of the logarithm, which then becomes (λ2/m2)(x/(1 − x)2). Then since∫ 1

0
dx ln(x(1− x)−2) = 1 and

∫ 1

0
(1− x)dx ln(x(1− x)−2) = −(1/4) find

(8i)

∫
(1; kσ)k−2C(k2)d4k(k2 − 2p · k)−1 =

(
2 ln

λ2

m2 + 2; pσ

(
ln
λ2

m2 −
1

2

))
,
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so that substitution into (19) (after the (p− k−m)−1 in (19) is replaced by (p− k+
m)(k2 − 2p · k)−1) gives

(19) = (e2/8π)γµ[(p +m)(2 ln(λ2/m2) + 2)− p(ln(λ2/m2)− 1

2
)]γµ

= (e2/8π)[8m(ln(λ2/m2) + 1)− p(2 ln(λ2m2) + 5)], (20)

using (4a) to remove the γµ’s. This agrees with Eq. (20) of the text, and gives the
self-energy (21) when p is replaced by m.

B. Corrections to Scattering

The term (12) in the radiationless scattering, after rationalizing the matrix
denominators and using p2

1 = p2
2 = m2 requires the integrals (9a), as we have

discussed. This is an integral with three denominators which we do in two stages.
First the factors (k2 − 2p1 · k) and (k2 − 2p2 · k) are combined by a parameter y;

(k2 − 2p1 · k)−1(k2 − 2p2 · k)−1 =

∫ 1

0

dy(k2 − 2py · k)−2,

from (14a) where
py = yp1 + (1− y)p2. (21a)

We therefore need the integrals

(8i)

∫
(1; kσ; kσkτ )d4k(k2 − L)−2(k2 − 2py · k)−2, (22a)

which we will then integrate with respect to y from 0 to 1. Next we do the integrals
(22a) immediately from (20a) with p = py, ∆ = 0:

(22a) = − ∫ 1

0

∫ 1

0
(1;xpyσ;x2pyσpyτ

−1
2δστ (x2p2

y + (1− x)L))2x(1− x)dx(x2p2
y + L(1− x))−2dy.

We now turn to the integrals on L as required in (8a). The first term, (1), in
(1; kσ; kσkτ ) gives no trouble for large L, but if L is put equal to zero there results
x−2p−2

y which leads to a diverging integral on x as x→ 0. This infra-red catastrophe
is analyzed by using λ2

min for the lower limit of the L integral. For the last term

the upper limit of L must be kept as λ2. Assuming λ2
min � p2

y � λ2 the x integrals
which remain are trivial, as in the self-energy case. One finds

−(8i)

∫
(k2 − λ2

min)−1d4kC(k2 − λ2
min)(k2 − 2p1 · k)−1(k2 − 2p2 · k)−1

=

∫ 1

0

p−2
y dy ln(p2

y/λ
2
min) (23a)
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−(8i)

∫
kσk−2d4kC(k2)(k2 − 2p1 · k)−1(k2 − 2p2 · k)−1

= 2

∫ 1

0

pyσp
−2
y dy, (24a)

−(8i)

∫
kσkτk

−2d4kC(k2)(k2 − 2p1 · k)−1(k2 − 2p2 · k)−1

=

∫ 1

0

pyσpyτp
−2
y dy − 1

2
δστ

∫ 1

0

dy ln(λ2p−2
y ) +

1

4
δστ . (25a)

The integrals on y give,∫ 1

0

p−2
y dy ln(p2

yλ
−2

min) = 4(m2 sin 2θ)−1

[
θ ln(mλ−1

min)−
∫ θ

0

αtanαdα

]
, (26a)

∫ 1

0

pyσp
−2
y dy = θ(m2 sin 2θ)−1(p1σ + P2σ), (27a)∫ 1

0

pyσpyτp
−2
y dy = θ(2m2 sin 2θ)−1(p1σ + p1τ (p2σ + p2τ )

+q−2qσqτ (1− θctnθ), (28a)∫ 1

0

dy ln(λ2p−2
y ) = ln(λ2/m2) + 2(1− θctnθ). (29a)

These integrals on y were performed as follows. Since p2 = p1 + q where q is the
momentum carried by the potential, it follows from p2

2 = p2
1 = m2 that 2p1·q = −q2

so that since py = p1+q(1−y), p2
y = m2−q2y(1−y). The substitution 2y−1 = tanθ

where θ is defined by 4m2 sin2 θ = q2 is useful for it means p2
y = m2sec2α/sec2θ

and p−2
y dy = (m2 sin 2θ))−1dα where α goes from −θ to +θ.

These results are substituted into the original scattering formula (2a), giving
(22). It has been simplified by frequent use of the fact that p1 operating on the
initial state is m and likewise p2 when it appears at the left is replacable by m.
(Thus, to simplify:

γµp2ap1γµ = −2p1ap2 by (4a),

= −2(p2 − q)a(p1 + q) = −2(m− q)a(m+ q).

A term like qaq = −q2a + 2(a · q)q is equivalent to just −q2a since
q = p2 − p1 = m−m has zero matrix element.) The renormalization term requires
the corresponding integrals for the special case q = 0.
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C. Vacuum Polarization

The expressions (32) and (32′) for Jµν in the vacuum polarization problem
require the calculation of the integral

Jµν(m2) =
e2

πi

∫
Sp[γµ(p− 1

2
q +m)γνp +

1

2
q +m)]d4p

×((p− 1

2
q)2 −m2)−1((p +

1

2
q)2 −m2)−1, (32)

where we have replaced p by p − 1
2q to simplify the calculation somewhat. We

shall indicate the method of calculation by studying the integral,

I(m2) =

∫
pσpτd

4p((p− 1

2
q)2 −m2)−1((p +

1

2
q)2 −m2)−1.

The factors in the denominator, p2 − p · q −m2 + 1
4q2 and p2 + p · q −m2 + 1

4q2

are combined as usual by (8a) but for symmetry we substitute x = 1
2 (1 + η),

(1− x) = 1
2 (1− η) and integrate η from −1 to +1:

I(m2) =

+1∫
−1

pσpτd
4p(p2 − ηp · q −m2 +

1

4
q2)−2dη/2. (30a)

But the integral on p will not be found in our list for it is badly divergent.
However, as discussed in Section 7, Eq. (34′) we do not wish I(m2) but rather
∞∫
0

[I(m2)− I(m2 + λ2)]G(λ)dλ. We can calculate the difference I(m2)− I(m2 +λ2)

by first calculating the derivative I ′(m2 + L) of I with respect to m2 at m2 + L
and later integrating L from zero to λ2. By differentiating (30a), with respect to
m2 find,

I ′(m2 + L) =

+1∫
−1

pσpτd
4p(p2 − ηp · q −m2 − L+

1

4
q2)−3dη.

This still diverges, but we can differentiate again to get

I ′′(m2 + L) = 3

+1∫
−1

pσpτd
4p(p2 − ηp · q −m2 − L+

1

4
q2)−4dη

= −(8i)−1

+1∫
−1

(
1

4
η2qσqτD

−2 − 1

2
δστD

−1)dη (31a)

(where D = 1
4 (η2 − 1)q2 + m2 + L), which now converges and has been evaluated

by (13a) with p = 1
2ηq and ∆ = m2 + L − 1

4q2. Now to get I ′ we may integrate

46



I ′′ with respect to L as an indefinite integral and we may choose any convenient
arbitrary constant. This is because a constant C in I ′ will mean a term −Cλ2 in
I(m2)− I(m2 +λ2) which vanishes since we will integrate the results times G(λ)dλ

and
∞∫
0

λ2G(λ)dλ = 0. This means that the logarithm appearing on integrating L

in (31a) presents no problem. We may take

I ′(m2 + L) = (8i)−1

+1∫
−1

[
1

4
η2qσqτD

−1 +
1

2
δστ lnD]dη + Cδστ ,

a subsequent integral on L and finally on η presents no new problems. There results

−(8i)

∫
pσpτd

4p((p− 1

2
q)2 −m2)−1((p +

1

2
q)2 −m2)−1

= (qσqτ − δστq2)

[
1

9
− 4m2 − q2

3q2

(
1− θ

tanθ

)
+

1

6
ln
λ2

m2

]
+δστ [(λ2 +m2) ln(λ2m−2 + 1)− C ′λ2] (32a)

where we assume λ2 � m2 and have put some terms into the arbitrary constant C ′

which is independent of λ2 (but in principle could depend on q2 and which drops
out in the integral on G(λ)dλ. We have set q2 = 4m2 sin2 θ.

In a very similar way the integral with m2 in the numerator can be worked out.
It is, of course, necessary to differentiate this m2 also when calculating I ′ and I ′′.
There results

−(8i)

∫
m2d4p((p− 1

2
q)2 −m2)−1((p +

1

2
q)2 −m2)−1

= 4m2(1− θctnθ)− q2/3 + 2(λ2 +m2) ln(λ2m−2 + 1)− C ′′λ2), (33a)

with another unimportant constant C ′′. The complete problem requires the further
integral,

−(8i)

∫
(1; pσ)d4p((p− 1

2
q)2 −m2)−1((p +

1

2
q)2 −m2)−1

= (1, 0)(4(1− θctnθ) + 2 ln(λ2m−2)). (34a)

The value of the integral (34a) times m2 differs from (33a), of course, because the
results on the right are not actually the integrals on the left, hut rather equal their
actual value minus their value for m2 = m2 + λ2.

Combining these quantities, as required by (32), dropping the constants C ′, C ′′

and evaluating the spur gives (33). The spurs are evaluated in the usual way, noting
that the spur of any odd number of γ matrices vanishes and Sp(AB) = Sp(BA) for
arbitrary A,B. The Sp(1) = 4 and we also have

1

2
Sp[(p1 +m1)(p2 −m2)] = p1 · p2 −m1m2, (35a)
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1

2
Sp[(p1 +m1)(p2 −m2)(p4 −m4)] = (p1 · p2 −m1m2)(p3 · p4 −m3m4)

−(p1 · p3 −m1m3)(p2 · p4 −m2m4) + (P − 1 · p4 −m1m4)(p2 · p3 −m2m3), (36a)

where pi,mi are arbitrary four-vectors and constants.
It is interesting that the terms of order λ2 lnλ2 go out, so that the charge

renormalization depends only logarithmically on λ2. This is not true for some of
the meson theories. Electrodynamics is suspiciously unique in the mildness of its
divergence.

D. More Complex Problems

Matrix elements for complex problems can be set up in a manner analogous to that
used for the simpler cases. We give three illustrations; higher order corrections to
the M∅ller scattering, to the Compton scattering, and the interaction of a neutron

Figure 8: The interaction between two electrons to order (e2/~c)2. One adds
the contribution of every figure involving two virtual quanta, Appendix D.

with an electromagnetic field.
For the M∅ller scattering, consider two electrons, one in state u1 of momentum

p1 and the other in state u2 of momentum p2. Later they are found in states
u3,p3 and u4,p4. This may happen (first order in e2/~c) because they exchange
a quantum of momentum q = p1 − p3 = p4 − p2 in the manner of Eq. (4) and
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Fig. 1. The matrix element for this process is proportional to (translating (4) to
momentum space)

(ũ4γµu2)(ũ3γµu1)q−2. (37a)

We shall discuss corrections to (37a) to the next order in e2/~c. (There is also the
possibility that it is the electron at 2 which finally arrives at 3, the electron at 1
going to 4 through the exchange of quantum of momentum p3−p2. The amplitude
for this process, (ũ4γµu1)(ũ3γµu2)(p3 − p2)−2 must be subtracted from (37a) in
accordance with the exclusion principle. A similar situation exists to each order so
that we need consider in detail only the corrections to (37a), reserving to the last
the subtraction of the same terms with 3, 4 exchanged.) One reason that (37a) is
modified is that two quanta may be exchanged, in the manner of Fig. 8a. The total
matrix element for all exchanges of this type is

(e2/πi)

∫
(ũ3γν(p1 − k−m)−1γµu1)(ũ4γν(p2 + k−m)−1γµu2)

·k−2(q− k)−2d4k, (38a)

as is clear from the figure and the general rule that electrons of momentum p
contribute in amplitude (p − m)−1 between interactions γµ and that quanta of
momentum k contribute k−2. In integrating on d4k and summing over µ and ν,
we add all alternatives of the type of Fig. 8a. If the time of absorption, γµ, of the
quantum k by electron 2 is later than the absorption, γµ, of q− k, this corresponds
to the virtual state p2 +k being a positron (so that (38a) contains over thirty terms
of the conventional method of analysis).

In integrating over all these alternatives we have considered all possible distor-
tions of Fig. 8a which preserve the order of events along the trajectories. We have
not included the possibilities corresponding to Fig. 8b, however. Their contribution
is

(e2/πi)

∫
(ũ3γν(p1 − k−m)−1γνu1)

×(ũ4γµ(p2 + q− k−m)−1γνu2)k−2(q− k)−2d4k, (39a)

as is readily verified by labeling the diagram. The contributions of all possible
ways that an event can occur are to be added. This means that one adds with
equal weight the integrals corresponding to each topologically distinct figure.

To this same order there are also the possibilities of Fig. 8d which give

(e2/πi)

∫
(ũ3γν(p2 − k−m)−1γµ(p1 − k−m)−1γνu1)× (ũ4γµu2)k−2q−2d4k.

This integral on k will be seen to be precisely the integral (12) for the radiative
corrections to scattering, which we have worked out. The term may be combined
with the renormalization terms resulting from the difference of the effects of mass
change and the terms, Figs. 8f and 8g. Figures 8e, 8h, and 8i are similarly analyzed.

Finally the term Fig. 8c is clearly related to our vacuum polarization problem,
and when integrated gives a term proportional to (ũ4γµu2)(ũ3γνu1)Jµνq

−4. If the
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Figure 9: Radiative correction to the Compton scattering term (a) of Fig.
5. Appendix D.

charge is renormalized the term ln(λ/m) in Jµν in (33) is omitted so there is no
remaining dependence on the cut-off.

The only new integrals we require are the convergent integrals (38a)
and (39a). They can be simplified by rationalizing the denominators
and combining them by (14a). For example (38a) involves the factors
(k2 − 2p1 · k)−1(k2 + 2p2 · k)−1k−2(q2 + k2 − 2q · k)−2. The first two may be com-
bined by (14a) with a parameter x, and the second pair by an expression obtained
by differentation (l5a) with respect to b and calling the parameter y. There results
a factor (k2−2px ·k)−2(k2 +yq2−2yq ·k)−4 so that the integrals on d4k now involve
two factors and can be performed by the methods given earlier in the appendix.
The subsequent integrals on the parameters x and y are complicated and have not
been worked out in detail.

Working with charged mesons there is often a considerable reduction of the
number of terms. For example, for the interaction between protons resulting from
the exchange of two mesons only the term corresponding to Fig. 8h remains. Term
8a, for example, is impossible, for if the first proton emits a positive meson the
second cannot absorb it directly for only neutrons can absorb positive mesons.

As a second example, consider the radiative correction to the Compton scat-
tering. As seen from Eq. (15) and Fig. 5 this scattering is represented by two
terms, so that we can consider the corrections to each one separately. Figure 9
shows the types of terms arising from corrections to the term of Fig. 5a. Calling k
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the momentum of the virtual quantum, Fig. 9a gives an integral∫
γµ(p2 − k−m)−1e2(p1 + q1 − k−m)−1e1(p1 − k−m)−1γµk−2d4k,

convergent without cut-off and reducible by the methods outlined in this appendix.
The other terms are relatively easy to evaluate. Terms b and c of Fig. 9

are closely related to radiative corrections (although somewhat more difficult to
evaluate, for one of the states is not that of a free electron, (p1 + q)2 6= m2).
Terms e, f , are renormalization terms. From term d must be subtracted explicitly
the effect of mass ∆m, as analyzed in Eqs. (26) and (27) leading to (28) with
p′ = p1 + q, a = e2, b = e1. Terms g, h give zero since the vacuum polarization
has zero effect on free light quanta, q2

1 = 0, q2
2 = 0. The total is insensitive to the

cut-off λ.
The result shows an infra-red catastrophe, the largest part of the effect. When

cut-off at λmin, the effect proportional to ln(m/λmin) goes as

(e2/π) ln(m/λmin)(1− 2θ ctn2θ), (40a)

times the uncorrected amplitude, where (p2−p1)2 = 4m2 sin2 θ. This is the same as
for the radiative correction to scattering for a deflection p2−p1. This is physically
clear since the long wave quanta are not effected by short-lived intermediate states.
The infra-red effects arise30 from a final adjustment of the field from the asymptotic
coulomb field characteristic of the electron of momentum p1 before the collision to
that characteristic of an electron moving in a new direction p2 after the collision.

The complete expression for the correction is a very complicated expression
involving transcendental integrals.

As a final example we consider the interaction of a neutron with an electromag-
netic field in virtue of the fact that the neutron may emit a virtual negative meson.
We choose the example of pseudoscalar mesons with pseudovector coupling. The
change in amplitude due to an electromagnetic field A = a exp(−iq ·x) determines
the scattering of a neutron by such a field. In the limit of small q it wilt vary as
qa− aq which represents the interaction of a particle possessing a magnetic mo-
ment. The first-order interaction between an electron and a neutron is given by the
same calculation by considering the exchange of a quantum between the electron
and the nucleon. In this case aµ is q−2 times the matrix element of γµ between the
initial and final states of the electron, the states differing in momentum by q.

The interaction may occur because the neutron of momentum p1 emits a neg-
ative meson becoming a proton which proton interacts with the field and then
reabsorbs the meson (Fig. 10a). The matrix for this process is (p2 = p1 + q),∫

(γ5k(p2 − k−M)−1a(p1 − k−M)−1(γ5k)(k2 − µ2)−1d4k. (41a)

Alternatively it may be the meson which interacts with the field. We assume that
it does this in the manner of a scalar potential satisfying the Klein Gordon Eq.

30F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
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(35), (Fig. l0b)

−
∫

(γ5k2)(p1 − k1 −M)−1(γ5k1)(k2
2 − µ2)−1

×(k2 · a+ k1 · a)(k2
1 − µ2)−1d4k1, (42a)

where we have put k2 = k1 + q. The change in sign arises because the virtual
meson is negative. Finally there are two terms arising from the γ5a part of the
pseudovector coupling (Figs. 10c, 10d)∫

(γ5k)(p2 − k−M)−1(γ5a)(k2 − µ2)−1d4k, (43a)

and ∫
(γ5a)(p1 − k−M)−1(γ5k)(k2 − µ2)−1d4k, (44a)

Using convergence factors in the manner discussed in the section on meson theories
each integral can be evaluated and the results combined. Expanded in powers of q
the first term gives the magnetic moment of the neutron and is insensitive to the
cut-off, the next gives the scattering amplitude of stow electrons on neutrons, and
depends logarithmically on the cut-off.

The expressions may be simplified and combined somewhat before integration.
This makes the integrals a little easier and also shows the relation to the case
of pseudoscalar coupling. For example in (41a) the final γ5k can be written as
γ5(k− p1 + M) since p1 = M when operating on the initial neutron state. This
is (p1 − k −M)γ5 + 2mγ5 since γ5 anticommutes with p1 and k. The first term
cancels the (p1 − k −M)−1 and gives a term which just cancels (43a). In a like
manner the leading factor γ5k in (41a) is written as −2Mγ − 5− γ5(p2 − k−M),
the second term leading to a simpler term containing no (p2 − k −M)−1 factor
and combining with a similar one from (44a). One simplifies the γ5k1 and γ5k2 in
(42a) in an analogous way. There finally results terms like (41a), (42a) but with
pseudoscalar coupling 2Mγ5 instead of γ5k, no terms like (43a) or (44a) and a
remainder, representing the difference in effects of pseudovector and pseudoscalar
coupling. The pseudoscalar terms do not depend sensitively on the cut-off, but
the difference term depends on it logarithmically. The difference term affects the
electron-neutron interaction but not the magnetic moment of the neutron.

Interaction of a proton with an electromagnetic potential can be similarly an-
alyzed. There is an effect of virtual mesons on the electromagnetic properties of
the proton even in the case that the mesons are neutral. It is analogous to the
radiative corrections to the scattering of electrons due to virtual photons. The sum
of the magnetic moments of neutron and proton for charged mesons is the same as
the proton moment calculated for the corresponding neutral mesons. In fact it is
readily seen by comparing diagrams. that for arbitrary q, the scattering matrix to
first order in the electromagnetic potential for a proton according to neutral meson
theory is equal, if the mesons were charged, to the sum of the matrix for a neutron
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Figure 10: According to the meson theory a neutron interacts with an elec-
tromagnetic potential a by first emitting a virtual charged meson. The
figure illustrates the case for a pseudoscalar meson with pseudovector cou-
pling. Appendix D.

and the matrix for a proton. This is true, for any type or mixtures of meson cou-
pling, to all orders in the coupling (neglecting the mass difference of neutron and
proton).
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