Example 1

We start with an example that could easily come from a standard textbook on calculus. $$ F(x,y) = \left\{ \begin{array}{ll} (x^2 - y^2)/(x^2 + y^2) & \quad \mbox{for} \quad (x,y) \ne (0,0) \\ 0 & \quad \mbox{for} \quad (x,y) = (0,0) \end{array} \right. $$ Let's proceed with some - innocent looking - iterated limits. $$ \lim_{x\rightarrow\infty} \left( \lim_{y\rightarrow\infty} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x\rightarrow\infty} \left( \lim_{y\rightarrow\infty} \frac{x^2/y^2 - 1}{x^2/y^2 + 1} \right) = \lim_{x\rightarrow\infty} (-1) = -1 $$ $$ \lim_{y\rightarrow\infty} \left( \lim_{x\rightarrow\infty} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y\rightarrow\infty} \left( \lim_{x\rightarrow\infty} \frac{1 + y^2/x^2}{1 + y^2/x^2} \right) = \lim_{x\rightarrow\infty} (+1) = +1 $$ The iterated limits, apparently, do not commute. $$ \lim_{x\rightarrow 0} \left( \lim_{y\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x\rightarrow 0} \left( \frac{x^2}{x^2} \right) = +1 $$ $$ \lim_{y\rightarrow 0} \left( \lim_{x\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y\rightarrow 0} \left( \frac{-y^2}{y^2} \right) = -1 $$ The iterated limits, apparently, do not commute.
Now consider again the iterated limits, leading to a level of mathematics somewhat below the idealization. $$ \lim_{x\rightarrow 0} \left( \lim_{y\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x\rightarrow 0} \left( \frac{x^2}{x^2} \right) $$ Then our Axiom comes into effect: Completed infinity is not given. The limit for $y\rightarrow 0$ therefore may not be considered as completed. Or the value $y=0$, upon retrospect, is not actually reached: $y\ne 0$. Therefore what's actually left, instead of the number $0$, is a number slightly different from $0$, let's call it $\epsilon$: $$ \lim_{x\rightarrow 0} \left( \lim_{y\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x\rightarrow 0} \left( \frac{x^2 - \epsilon^2}{x^2 + \epsilon^2} \right) = \left( \frac{-\epsilon^2}{+\epsilon^2} \right) = -1 $$ This is the same outcome as with: $$ \lim_{y\rightarrow 0} \left( \lim_{x\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y\rightarrow 0} \left( \frac{-y^2}{y^2} \right) = -1 $$ But wait! The Axiom comes into effect again: Completed infinity is not given. The limit for $x\rightarrow 0$ therefore may not be considered as completed. Or the value $x=0$, upon retrospect, is not actually reached: $x\ne 0$. Therefore what's actually left, instead of the number $0$, is a number slightly different from $0$, let's call it $\delta$: $$ \lim_{y\rightarrow 0} \left( \lim_{x\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{y\rightarrow 0} \left( \frac{\delta^2 - y^2}{\delta^2 + y^2} \right) = \left( \frac{\delta^2}{\delta^2} \right) = +1 $$ This is the same outcome as with: $$ \lim_{x\rightarrow 0} \left( \lim_{y\rightarrow 0} \frac{x^2 - y^2}{x^2 + y^2} \right) = \lim_{x\rightarrow 0} \left( \frac{x^2}{x^2} \right) = +1 $$ We conclude that: $$ \lim_{x\rightarrow 0} \left( \lim_{y\rightarrow 0} F(x,y) \right) = \lim_{y\rightarrow 0} \left( \lim_{x\rightarrow 0} F(x,y) \right) $$ So it seems that the iterated limits do indeed commute in the first place. But the outcome can be $+1$ or $-1$, seemingly at will. The latter would lead to the conclusion that both iterated limits, actually, do not exist.
It's good to take a closer look at the above. We will do so by introducing polar coordinates: $$ x = r\cos(\phi) \quad \mbox{;} \quad y = r\sin(\phi) $$ Giving: $$ F(x,y) = \frac{x^2 - y^2}{x^2 + y^2} = \frac{r^2 ( \cos^2(\phi) - \sin^2(\phi) ) } {r^2 ( \cos^2(\phi) + \sin^2(\phi) ) } = \cos(2\phi) $$ Now we can understand immediately why those limits of $F(x,y)$ for $x$ and $y$ indeed do not commute. At $(x,y) = (0,0)$ this function is singular and it assumes any value between $-1$ and $+1$ there. But the latter is the case anywhere else in the $(x,y)-$plane. A limit for $x\rightarrow\infty$ and/or $y\rightarrow\infty$ can assume any value between $-1$ and $+1$ as well. The function is sort of a circular wave and has a period $\pi$, with the radii of a circle as its contour lines. A few pictures say more than a thousand words.

Black corresponds with function values $(-1)$. White corresponds with function values $(+1)$. Grey corresponds with function values between these extremes. Note that the contour lines intersect at the origin, something that can only happen if the function is singular at that place.
A "natural" way to define limits with the function $F(x,y)$ is to proceed along contour lines. Just suppose that we decide to approach the origin as well as infinity along a single contour line. What we have then are single limits.
Select a contour line in the "black" region of $F(x,y)$, namely $x = 0$ . Then: $$ \lim_{(x,y)\rightarrow(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y\rightarrow 0} \frac{-y^2}{y^2} = -1 $$ $$ \lim_{(x,y)\rightarrow(\infty,\infty)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y\rightarrow \infty} \frac{-y^2}{y^2} = -1 $$ Select a contour line in the "white" region of $F(x,y)$, namely $y = 0$ . Then: $$ \lim_{(x,y)\rightarrow(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow 0} \frac{x^2}{x^2} = +1 $$ $$ \lim_{(x,y)\rightarrow(\infty,\infty)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow \infty} \frac{x^2}{x^2} = +1 $$ Select a contour line in the "grey" region of $F(x,y)$, namely $y=\pm x$ . Then: $$ \lim_{(x,y)\rightarrow(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow 0} \frac{x^2 - x^2}{x^2 + x^2} = 0 $$ $$ \lim_{(x,y)\rightarrow(\infty,\infty)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow \infty} \frac{x^2 - x^2}{x^2 + x^2} = 0 $$ Select another contour line in the "grey" region of $F(x,y)$, namely $y=x/\sqrt{2}$ . Then: $$ \lim_{(x,y)\rightarrow(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow 0} \frac{x^2 - x^2/2}{x^2 + x^2/2} = \frac{1}{3} $$ $$ \lim_{(x,y)\rightarrow(\infty,\infty)} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\rightarrow \infty} \frac{x^2 - x^2/2}{x^2 + x^2/2} = \frac{1}{3} $$